Solutions For March

668. The nonisosceles right triangle $A B C$ has $\angle C A B=90^{\circ}$. The inscribed circle with centre T touches the sides $A B$ and $A C$ at U and V respectively. The tangent through A of the circumscribed circle meets $U V$ produced in S. Prove that
(a) $S T \| B C$;
(b) $\left|d_{1}-d_{2}\right|=r$, where r is the radius of the inscribed circle and d_{1} and d_{2} are the respective distances from S to $A C$ and $A B$.
(a) Solution 1. Wolog, suppose that the situation is as diagrammed. $\angle B A C=\angle A U T=\angle A V T=90^{\circ}$, so that $A U V T$ is a rectangle with $A U=A V$ and $U T=V T$. Hence $A U T V$ is a square with diagonals $A T$ and $U V$ which right-bisect each other at W. Since $S W$ right-bisects $A T$, by reflection in the line $S W$, we see that $\triangle A S U \equiv \triangle U S T$, and so $\angle U T S=\angle U A S$.

Let M be the midpoint of $B C$. Then M is the circumcentre of $\triangle A B C$, so that $M A=M C$ and $\angle M C A=\angle M A C$. Since $A S$ is tangent to the circumcircle of $\triangle A B C, A S \perp A M$. Hence

$$
\angle U T S=\angle U A S=\angle S A M-\angle B A M=90^{\circ}-\angle B A M=\angle M A C=\angle M C A
$$

Now $U T \perp A B$ implies that $U T \| A C$. Since $\angle U T S=\angle A C B$, it follows that $S T \| B C$.
Solution 2. Wolog, suppose that S is on the opposite side of $A B$ to C.
$B T$, being a part of the diameter produced of the inscribed circle, is a line of reflection that takes the circle to itself and takes the tangent $B A$ to $B C$. Hence $\angle U B T=\frac{1}{2} \angle A B C$. Let $\alpha=\angle A B T$. By the tangent-chord theorem applied to the circumscribed circle, $\angle X A C=\angle A B C=2 \alpha$, so that $\angle S A U=90^{\circ}-2 \alpha$.

Consider triangles $S A U$ and $S T U$. Since $A U T V$ is a square (see the first solution), $A U=U T$ and $\angle A U V=\angle T U V=45^{\circ}$ so $\angle S U A=\angle S U T=135^{\circ}$. Also $S U$ is common. Hence $\triangle S A U \equiv \triangle S T U$, so $\angle S T U=\angle S A U=90^{\circ}-2 \alpha$. Therefore,

$$
\angle S T B=\angle U T B-\angle S T U=\left(90^{\circ}-\alpha\right)-\left(90^{\circ}-2 \alpha\right)=\alpha=\angle T B C
$$

from which it results that $S T \| B C$.
Solution 3. As before $\triangle A U S \equiv \triangle T U S$, so $\angle S A U=\angle S T U$. Since $U T \| A C, \angle S T U=\angle S Y A$. Also, by the tangent-chord theorem, $\angle S A B=\angle A C B$. Hence $\angle S Y A=\angle S T U=\angle S A B=\angle A C B$, so $S T \| B C$.

Solution 4. In the Cartesian plane, let $A \sim(0,0), B \sim(0,-b), C \sim(c, 0)$. The centre of the circumscribed circle is at $M \sim(c / 2,-b / 2)$. Since the slope of $A M$ is $-b / c$, the equation of the tangent to the circumscribed circle through A is $y=(c / b) x$. Let r be the radius of the inscribed circle. Since $A U=A V$, the equation of the line $U V$ is $y=x-r$. The abscissa of S is the solution of $x-r=(c x) / b$, so $S \sim\left(\frac{b r}{b-c}, \frac{c r}{b-c}\right)$. Since $T \sim(r,-r)$, the slope of $S T$ is b / c and the result follows.
(b) Solution 1. [\cdots] denotes area. Wolog, suppose that $d_{1}>d_{2}$, as diagrammed.

Let r be the inradius of $\triangle A B C$. Then $[A V U]=\frac{1}{2} r^{2},[A V S]=\frac{1}{2} r d_{1}$ and $[A U S]=\frac{1}{2} r d_{2}$. From $[A V U]=[A V S]-[A U S]$, it follows that $r^{2}=r d_{1}-r d_{2}$, whence $r=d_{1}-d_{2}$.

Solution 2. [F. Crnogorac] Suppose that the situation is as diagrammed. Let P and Q be the respective feet of the perpendiculars from S to $A C$ and $A B$. Since $\angle P V S=45^{\circ}$ and $\angle S P V=90^{\circ}, \triangle P S V$ is isosceles and so $P S=P V=P A+A V=S Q+A V$, i.e., $d_{1}=d_{2}+r$.

Solution 3. Using the coordinates of the fourth solution of (a), we find that

$$
d_{1}=\left|\frac{c r}{b-c}\right| \quad \text { and } \quad d_{2}=\left|\frac{b r}{b-c}\right|
$$

whence $\left|d_{2}-d_{1}\right|=r$ as desired.
(b) Solution. [M. Boase] Wolog, assume that the configuration is as diagrammed.

Since $\angle S U B=\angle A U V=45^{\circ}, S U$ is parallel to the external bisector of $\angle A$. This bisector is the locus of points equidistant from $A B$ and $C A$ produced. Wolog, let $P S$ meet this bisector in W, as in the diagram. Then $P W=P A$ so that $P S-P A=P S-P W=S W=A U$ and thus $d_{1}-d_{2}=r$.
669. Let $n \geq 3$ be a natural number. Prove that

$$
1989 \mid n^{n^{n^{n}}}-n^{n^{n}}
$$

i.e., the number on the right is a multiple of 1989.

Solution 1. Let $N=n^{n^{n^{n}}}-n^{n^{n}}$. Since $1989=3^{2} \cdot 13 \cdot 17$,

$$
N \equiv 0(\bmod 1989) \Leftrightarrow N \equiv 0(\bmod \quad 9,13 \& 17) .
$$

We require the following facts:
(i) $x^{u} \equiv 0(\bmod 9)$ whenever $u \geq 2$ and $x \equiv 0(\bmod 3)$.
(ii) $x^{6} \equiv 1(\bmod 9)$ whenever $x \not \equiv 0(\bmod 3)$.
(iii) $x^{u} \equiv 0(\bmod 13)$ whenever $x \equiv 0(\bmod 13)$.
(iv) $x^{12} \equiv 1(\bmod 13)$ whenever $x \not \equiv 0(\bmod 13)$, by Fermat's Little Theorem.
(v) $x^{u} \equiv 0(\bmod 17)$ whenever $x \equiv 0(\bmod 17)$.
(vi) $x^{16} \equiv 1(\bmod 17)$ whenever $x \not \equiv 0(\bmod 17)$, by FLT.
(vii) $x^{4} \equiv 1(\bmod 16)$ whenever $x=2 y+1$ is odd. $\left(\right.$ For, $(2 y+1)^{4}=16 y^{3}(y+2)+8 y(3 y+1)+1 \equiv 1$ $(\bmod 16)$.

Note that

$$
N=n^{n^{n}}\left[n^{\left(n^{n^{n}}-n^{n}\right)}-1\right]=n^{n^{n}}\left[n^{n^{n}\left(n^{n^{n}-n}-1\right)}-1\right] .
$$

Modulo 17. If $n \equiv 0(\bmod 17)$, then $n^{n^{n}} \equiv 0$, and so $N \equiv 0(\bmod 17)$.
If n is even, $n \geq 4$, then $n^{n} \equiv 0(\bmod 16)$, so that

$$
n^{n^{n}\left(n^{n^{n}-n}-1\right)} \equiv 1^{\left(n^{n^{n}-n}-1\right)} \equiv 1
$$

so $N \equiv 0(\bmod 17)$.
Suppose that n is odd. Then $n^{n} \equiv n(\bmod 4)$

$$
\begin{gathered}
\Rightarrow n^{n}-n=4 r \text { for some } r \in \mathbf{N} \\
\Rightarrow n^{n^{n}-n}=n^{4 r} \equiv 1 \quad(\bmod 16) \\
\Rightarrow n^{n^{n}-n}-1 \equiv 0(\bmod 16) \\
\Rightarrow n^{n^{n}\left(n^{n^{n}-n}-1\right)} \equiv 1 \quad(\bmod 17 \\
\quad \Rightarrow N \equiv 0 \quad(\bmod 17) .
\end{gathered}
$$

Hence $N \equiv 0(\bmod 17)$ for all $n \geq 3$.
Modulo 13. If $n \equiv 0(\bmod 13)$, then $n^{n^{n}} \equiv 0$ and $N \equiv 0(\bmod 13)$.
Suppose that n is even. Then $n^{n} \equiv 0(\bmod 4)$, so that $n^{n^{n}}-n^{n} \equiv 0(\bmod 4)$. Suppose that n is odd. Then $n^{n^{n}-n}-1 \equiv 0(\bmod 16)$ and so $n^{n^{n}}-n^{n} \equiv 0(\bmod 4)$.

If $n \equiv 0(\bmod 3)$, then $n^{n} \equiv 0$ so $n^{n}\left(n^{n^{n}-n}-1\right) \equiv 0(\bmod 3)$. If $n \equiv 1(\bmod 3)$, then $n^{n^{n}-n} \equiv 1$ so $n^{n}\left(n^{n^{n}-n}-1\right) \equiv 0(\bmod 3)$. If $n \equiv 2(\bmod 3)$, then, as $n^{n}-n$ is always even, $n^{n^{n}-n} \equiv 1$ so $n^{n}\left(n^{n^{n}-n}-1\right) \equiv 0$ $(\bmod 3)$. Hence, for all $n, n^{n^{n}}-n^{n} \equiv 0(\bmod 3)$.

It follows that $n^{n^{n}}-n^{n} \equiv 0(\bmod 12)$ for all values of n. Hence, when n is not a multiple of 13 , $n^{\left(n^{n^{n}}-n\right)} \equiv 1$ so $N \equiv 0(\bmod 13)$.

Modulo 9. If $n \equiv 0(\bmod 3)$, then $n^{n^{n}} \equiv 0(\bmod 9)$, so $N \equiv 0(\bmod 9)$. Let $n \not \equiv 0(\bmod 9)$. Since $n^{n^{n}}-n^{n}$ is divisible by 12 , it is divisible by 6 , and so $n^{\left(n^{n^{n}}-n^{n}\right)} \equiv 1$ and $N \equiv 0(\bmod 9)$. Hence $N \equiv 0$ $(\bmod 9)$ for all n.

The required result follows.
670. Consider the sequence of positive integers $\{1,12,123,1234,12345, \cdots\}$ where the next term is constructed by lengthening the previous term at the right-hand end by appending the next positive integer. Note that this next integer occupies only one place, with "carrying" occurring as in addition. Thus, the ninth and tenth terms of the sequence are 123456789 and 1234567900 respectively. Determine which terms of the sequence are divisible by 7 .

Solution 1. For positive integer n, let x_{n} be the nth term of the sequence, and let $x_{0}=0$. Then, for $n \geq 0, x_{n+1}=10 x_{n}+(n+1)$ so that $x_{n+1} \equiv 3 x_{n}+(n+1)(\bmod 7)$. Suppose that m is a nonnegative integer and that $x_{7 m}=a$. Then

$$
\begin{array}{lll}
x_{7 m+1} \equiv 3 a+1 \\
x_{7 m+5} \equiv 5 a+4
\end{array} \quad \begin{aligned}
& x_{7 m+2} \equiv 2 a+5 \\
& x_{7 m+6} \equiv a+4
\end{aligned} \quad \begin{aligned}
& x_{7 m+3} \equiv 6 a+4 \\
& x_{7 m+7} \equiv 3 a+5
\end{aligned} \quad x_{7 m+4} \equiv 4 a+2
$$

In particular, we find that, modulo $7,\left\{x_{7 m}\right\}$ is periodic with the values $\{0,5,6,2,4,3\}$ repeated, so that $0 \equiv x_{0} \equiv x_{42} \equiv x_{84} \equiv \cdots$. Hence, modulo $7, x_{7 m+1} \equiv 0$ iff $a \equiv 2, x_{7 m+2} \equiv 0$ iff $a \equiv 1, x_{7 m+3} \equiv 0$ iff $a \equiv 4$, $x_{7 m+4} \equiv 0$ iff $a \equiv 3, x_{7 m+5} \equiv 0$ iff $a \equiv 2$ and $x_{7 m+6} \equiv 0$ iff $a \equiv 3$. Putting this all together, we find that $x_{n} \equiv 0(\bmod 7)$ if and only if $n \equiv 0,22,26,31,39,41(\bmod 42)$.

Solution 2. [C. Deng] Recall the formula

$$
r^{n-1}+2 r^{n-2}+\cdots+(n-1) r+n=\frac{r^{n+1}-r-(r-1) n}{(r-1)^{2}}
$$

[Derive this.] Noting that

$$
a_{n}=1 \cdot 10^{n-1}+2 \cdots 10^{n-2}+\cdots+(n-1) \cdot 10+n
$$

we find that

$$
81 a_{n}=10^{n+1}-10-9 n
$$

for each positive integer n. Therefore

$$
81\left(a_{n+42}-a_{n}\right)=10^{n+1}\left(\left(10^{6}\right)^{7}-1\right)-9(42)
$$

for each positive integer n. Since $10^{6} \equiv 1$ (modulo 7), it follows that $a_{n+42} \equiv a_{n}$ (modulo 7), so that the sequence has period 42 (modulo 7). Thus, the value of n for which a_{n} is divisible by 7 are the solutions of the congruence $3^{n+1} \equiv 2 n+3$ (modulo 7). These are $n \equiv 22,26,31,39,41,42$ (modulo 7).
671. Each point in the plane is coloured with one of three distinct colours. Prove that there are two points that are unit distant apart with the same colour.

Solution 1. Suppose that the points in the plane are coloured with three colours. Select any point P.

We form two rhombi $P Q S R$ and $P U W V$, one the rotated image of the other for which all of the following segments have unit length: $P Q, P R, S Q, S R, Q R, P U, P V, W U, W V, U V, S W$. If P, Q, R are all coloured differently, then either the result holds or S must have the same colour as P. If P, U, V are all coloured differently, then either the result holds or W must have the same colour as P. Hence, either one of the triangles $P Q R$ and $P U V$ has two vertices the same colour, or else S and W must be coloured the same.

Solution 2. Suppose, if possible, the planar points can be coloured without two points unit distance apart being coloured the same. Then if A and B are distant $\sqrt{3}$ apart, then there are distinct points C and D such that $A C D$ and $B C D$ are equilateral triangles ($A C B D$ is a rhombus). Since A and B must be coloured differently from the two colours of C and D, A and B must have the same colour. Hence, if O is any point in the plane, every point on the circle of radius $\sqrt{3}$ consists of points coloured the same as O. But there are two points on this circle unit distant apart, and we get a contradiction of our initial assumption.

Solution 3. Suppose we can colour the points of the plane with three colours, red, blue and yellow so that the result fails. We show that three collinear points at unit distance are coloured with three different colours. Let P, Q, R be three such points, and let P, R be opposite sides of a unit hexagon $A B P C D R$ whose centre is Q.

If, say, Q is red, B and A must be coloured differently, as are A and R, R and D, D and C, C and P, P and B. Thus, B, R, C, are one colour, say, blue, and A, D, P the other, say yellow. The preliminary result follows.

Now consider any isosceles triangle $U V W$ with $|U V|=|U W|=3$ and $|V W|=2$. It follows from the preliminary result that U and V must have the same colour, as do U and W. But V and W cannot have the same colour and we reach a contradiction.

Solution 4. [D. Arthur] Suppose that the result is false. Let A, B be two points with $|A B|=3$. Within the segment $A B$ select P, Q with $|A P|=|P Q|=|Q B|=1$, and suppose that R and S are points on the same side of $A B$ with $\triangle R A P$ and $\triangle S P Q$ equilateral. Then $|R S|=1$. Suppose if possible that A and Q have the same colour. Then P must have a second colour and R and S the third, leading to a contradiction. Hence A must be coloured differently from both P and Q. Similarly B must be coloured differently from both P and Q. Since P and Q are coloured differently, A and B must have the same colour.

Now consider a trapezoid $A B C D$ with $|C B|=|A B|=|A D|=3$ and $|C D|=1$. By the foregoing observation, C, A, B, D must have the same colour. But this yields a contradiction. The result follows.
672. The Fibonacci sequence $\left\{F_{n}\right\}$ is defined by $F_{1}=F_{2}=1$ and $F_{n+2}=F_{n+1}+F_{n}$ for $n=0, \pm 1, \pm 2, \pm 3, \cdots$. The real number τ is the positive solution of the quadratic equation $x^{2}=x+1$.
(a) Prove that, for each positive integer $n, F_{-n}=(-1)^{n+1} F_{n}$.
(b) Prove that, for each integer $n, \tau^{n}=F_{n} \tau+F_{n-1}$.
(c) Let G_{n} be any one of the functions $F_{n+1} F_{n}, F_{n+1} F_{n-1}$ and F_{n}^{2}. In each case, prove that $G_{n+3}+G_{n}=$ $2\left(G_{n+2}+G_{n+1}\right)$.
(a) Solution. Since $F_{0}=F_{2}-F_{1}=0$, the result holds for $n=0$. Since $F_{-1}=F_{1}-F_{0}=1$, the result holds for $n=1$. Suppose that we have established the result for $n=0,1,2, \cdots r$. Then

$$
F_{-(r+1)}=F_{-r-1}=F_{-r+1}-F_{-r}=(-1)^{r} F_{r-1}-(-1)^{r+1} F_{r}=(-1)^{r+2}\left(F_{r-1}+F_{r}\right)=(-1)^{r+2} F_{r+1}
$$

The result follows by induction.
(b) Solution 1. The result holds for $n=0, n=1$ and $n=2$. Suppose that it holds for $n=0,1,2, \cdots, r$. Then

$$
\tau^{r+1}=\tau^{r}+\tau^{r-1}=\left(F_{r}+F_{r-1}\right) \tau+\left(F_{r-1}+F_{r-2}\right)=F_{r+1} \tau+F_{r} \tau
$$

This establishes the result for positive values of n. Now $\tau^{-1}=\tau-1=F_{-1} \tau+F_{-2}$, so the result holds for $n=-1$. Suppose that we have established the result for $n=0,-1,-2, \cdots,-r$. Then

$$
\tau^{-(r+1)}=\tau^{-(r-1)}-\tau^{-r}=\left(F_{-(r-1)}-F_{-r}\right) \tau+\left(F_{-r}-F_{-(r+1)}\right)=F_{-(r+1)} \tau+F_{-(r+2)}
$$

Solution 2. The result holds for $n=1$. Suppose that it holds for $n=r \geq 0$. Then

$$
\begin{aligned}
\tau^{r+1} & =\tau^{r} \cdot \tau=\left(F_{r} \tau+F_{r-1}\right) \tau=F_{r} \tau^{2}+F_{r-1} \tau \\
& =\left(F_{r}+F_{r-1}\right) \tau+F_{r}=F_{r+1} \tau+F_{r}
\end{aligned}
$$

Now consider nonpositive values of n. We have that $\tau^{0}=1, \tau^{-1}=\tau-1, \tau^{-2}=1-\tau^{-1}=2-\tau$. Suppose that we have shown for $r \geq 0$ that $\tau^{-r}=F_{-r} \tau+F_{-r-1}$. Then

$$
\begin{gathered}
\tau^{-(r+1)}=\tau^{-1} \tau^{-r}=F_{-r}+F_{-r-1}(\tau-1)=F_{-r-1} \tau+\left(F_{-r}-F_{-r-1}\right) \\
=F_{-r-1} \tau+F_{-r-2}=F_{-(r+1)} \tau+F_{-(r+1)-1}
\end{gathered}
$$

By induction, it follows that the result holds for both positive and negative values of n.
(c) Solution. Let $G_{n}=F_{n} F_{n+1}$. Then

$$
\begin{aligned}
G_{n+3}+G_{n} & =F_{n+4} F_{n+3}+F_{n+1} F_{n} \\
& =\left(F_{n+3}+F_{n+2}\right)\left(F_{n+2}+F_{n+1}\right)+\left(F_{n+3}-F_{n+2}\right)\left(F_{n+2}-F_{n+1}\right) \\
& =2\left(F_{n+3} F_{n+2}+F_{n+2} F_{n+1}\right)=2\left(G_{n+2}+G_{n+1}\right)
\end{aligned}
$$

Let $G_{n}=F_{n+1} F_{n-1}$. Then

$$
\begin{aligned}
G_{n+3}+G_{n} & =F_{n+4} F_{n+2}+F_{n+1} F_{n-1} \\
& =\left(F_{n+3}+F_{n+2}\right)\left(F_{n+1}+F_{n}\right)+\left(F_{n+3}-F_{n+2}\right)\left(F_{n+1}-F_{n}\right) \\
& =2\left(F_{n+3} F_{n+1}+F_{n+2} F_{n}\right)=2\left(G_{n+2}+G_{n+1}\right)
\end{aligned}
$$

Let $G_{n}=F_{n}^{2}$. Then

$$
\begin{aligned}
G_{n+3}+G_{n} & =F_{n+3}^{2}+F_{n}^{2}=\left(F_{n+2}+F_{n+1}\right)^{2}+\left(F_{n+2}-F_{n+1}\right)^{2} \\
& =F_{n+2}^{2}+2 F_{n+2} F_{n+1}+F_{n+1}^{2}+F_{n+2}^{2}-2 F_{n+2} F_{n+1}+F_{n+1}^{2}=2\left(G_{n+2}+G_{n+1}\right) .
\end{aligned}
$$

Comments. Since $F_{n}^{2}=F_{n} F_{n-1}+F_{n} F_{n-2}$, the third result of (c) can be obtained from the first two. J. Chui observed that, more generally, we can take $G_{n}=F_{n+u} F_{n+v}$ where u and v are integers. Then

$$
\begin{aligned}
G_{n+3}+G_{n}- & 2\left(G_{n+1}+G_{n+2}\right) \\
= & \left(F_{n+3+u} F_{n+3+v}+F_{n+u} F_{n+v}\right)-2\left(F_{n+2+u} F_{n+2+v}+F_{n+1+u} F_{n+1+v}\right) \\
= & \left(2 F_{n+1+u}+F_{n+u}\right)\left(2 F_{n+1+v}+F_{n+v}\right)+F_{n+u} F_{n+v} \\
& \quad-2\left(F_{n+1+u}+F_{n+u}\right)\left(F_{n+1+v}+F_{n+v}\right)-2 F_{n+1+u} F_{n+1+v} \\
= & 0,
\end{aligned}
$$

so that $G_{n+3}+G_{n}=2\left(G_{n+2}+G_{n+1}\right)$.
673. $A B C$ is an isosceles triangle with $A B=A C$. Let D be the point on the side $A C$ for which $C D=2 A D$. Let P be the point on the segment $B D$ such that $\angle A P C=90^{\circ}$. Prove that $\angle A B P=\angle P C B$.

Solution 1. Produce $B A$ to E so that $B A=A E$ and join $E C$. Then D is the centroid of $\triangle B E C$ and $B D$ produced meets $E C$ at its midpoint F. Since $A E=A C, \triangle C A E$ is isosceles and so $A F \perp E C$. Also, since A and F are midpoints of their respective segments, $A F \| B C$ and so $\angle A F B=\angle D B C$. Because $\angle A F C$ and $\angle A P C$ are both right, $A P C F$ is concyclic so that $\angle A F P=\angle A C P$.

Hence $\angle A B P=\angle A B C-\angle D B C=\angle A B C-\angle A F B=\angle A C B-\angle A C P=\angle P C B$.

Solution 2. Let E be the midpoint of $B C$ and let F be a point on $B D$ produced so that $A F \| B C$. Since triangle $A D F$ and $C D B$ are similar and $C D=2 A D$, then $A F=E C$ and $A E C F$ is a rectangle.

Since $\angle A P C=\angle A F C=90^{\circ}$, the quadrilateral $A P C F$ is concyclic, so that $\angle A F B=\angle A C P$. Since $A F \| B C, \angle A F B=\angle F B C$. Therefore

$$
\angle A B P=\angle A B C-\angle P B C=\angle A B C-\angle F B C=\angle A C B-\angle A C P=\angle P C B .
$$

Solution 3. [S. Sun] The circle with diameter $A C$ has as its centre the midpoint O of $A C$. It intersects $B C$ at the midpoint E (since $A B=A C$ and $A E \perp B C$). Let $E O$ produced meet the circle again at F; then $A E C F$ is concyclic.

Suppose $F B$ meets $A C$ at G. A rotation of 180° about O takes $A \leftrightarrow C, F \leftrightarrow E$, so that $B C=2 E C=$ $2 A F$ and $A F \| B C$. The triangles $A G F$ and $C G B$ are similar. Since $B C=2 A F$, then $C G=2 G A$, so that G and D coincide. Because $A F \| B C$ and $A F C P$ is concyclic, $\angle D B C=\angle D F A=\angle P F A=\angle P C A$. Therefore

$$
\angle A B P=\angle A B C-\angle D B C=\angle A B C-\angle P C A=\angle P C B .
$$

Solution 4. Assign coordinates: $A \sim(0, a), B \sim(-1,0), C \sim(1,0)$. Then $D \sim\left(\frac{1}{3}, \frac{2 a}{3}\right)$. Let $P \sim(p, q)$. Then, since P lies on the lines $y=\frac{a}{2}(x+1), q=\frac{a}{2}(p+1)$. The relation $A P \perp P C$ implies that

$$
-1=\left(\frac{q-a}{p}\right)\left(\frac{q}{p-1}\right)=\left[\frac{a(p-1)}{2 p}\right]\left[\frac{a(p+1)}{2(p-1)}\right]=\frac{a^{2}(p+1)}{4 p}=\frac{a q}{2 p}
$$

whence $p=-a^{2} /\left(a^{2}+4\right)$ and $q=2 a /\left(a^{2}+4\right)$. Now

$$
\tan \angle A B P=\frac{a-(a / 2)}{1+\left(a^{2} / 2\right)}=\frac{a}{2+a^{2}}
$$

while

$$
\tan \angle P C B=\frac{-q}{p-1}=\frac{-2 a}{-a^{2}-\left(a^{2}+4\right)}=\frac{a}{a^{2}+2}=\tan \angle A B P
$$

The result follows.
Solution 5. [C. Deng] Let $A \sim(0, b), B \sim(-a, 0), C \sim(a, 0)$ so that $D \sim(a / 3,2 b / 3)$. The midpoint M of $A C$ has coordinates $(a / 2, b / 2)$. It can be checked that the point with coordinates

$$
\left(\frac{-a b^{2}}{4 a^{2}+b^{2}}, \frac{2 a^{2} b}{4 a^{2}+b^{2}}\right)
$$

is the same distance from M as the points $A B$ so that it is on the circle with diameter $A C$ and $A P \| C P$. Since this point also lies on the line with equation $2 a y=b x+b a$ through B and D, it is none other than the point P. The circle with equation

$$
x^{2}+\left(y+\frac{a^{2}}{b}\right)^{2}=a^{2}+\frac{a^{4}}{b^{2}}
$$

is tangent to $A B$ and $A C$ at B and C respectively and contains the point P. Hence $\angle P C B=\angle P B A=$ $\angle D B A$, as desired.
674. The sides $B C, C A, A B$ of triangle $A B C$ are produced to the poins R, P, Q respectively, so that $C R=A P=B Q$. Prove that triangle $P Q R$ is equilateral if and only if triangle $A B C$ is equilateral.

Solution. Suppose that triangle $A B C$ is equilateral. A rotation of 60° about the centroid of $\triangle A B C$ will rotate the points R, P and Q. Hence $\triangle P Q R$ is equilateral. On the other hand, suppose, wolog, that $a \geq b \geq c$, with $a>c$. Then, for the internal angles of $\triangle A B C, A \geq B \geq C$. Suppose that $|P Q|=r$, $|Q R|=p$ and $|P R|=q$, while s is the common length of the extensions. Then

$$
p^{2}=s^{2}+(a+s)^{2}+2 s(a+s) \cos B
$$

and

$$
r^{2}=s^{2}+(c+s)^{2}+2 s(c+s) \cos A
$$

Since $a>c$ and $\cos B \geq \cos A$, we find that $p>r$, and so $\triangle P Q R$ is not equilateral.

