## Solutions

171. Let $n$ be a positive integer. In a round-robin match, $n$ teams compete and each pair of teams plays exactly one game. At the end of the match, the $i$ th team has $x_{i}$ wins and $y_{i}$ losses. There are no ties. Prove that

$$
x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=y_{1}^{2}+y_{2}^{2}+\cdots+y_{n}^{2}
$$

Solution 1. Each game results in both a win and a loss, so the total number of wins is equal to the total number of losses. Thus $\sum x_{i}=\sum y_{i}$. For each team, the total number of its wins and losses is equal to the number of games it plays. Thus $x_{i}+y_{i}=n-1$ for each i. Accordingly,

$$
0=(n-1) \sum_{i=1}^{n}\left(x_{i}-y_{i}\right)=\sum_{i=1}^{n}\left(x_{i}+y_{i}\right)\left(x_{i}-y_{i}\right)=\sum_{i=1}^{n}\left(x_{i}^{2}-y_{i}^{2}\right)
$$

from which the desired result follows.
Solution 2. Since $x_{i}+y_{i}=n-1$ for each $i$ and $x_{1}+x_{2}+\cdots+x_{n}=y_{1}+y_{2}+\cdots+y_{n}=\binom{n}{2}$ (the number of games played), we find that

$$
\begin{aligned}
\sum_{i=1}^{n} x_{i}^{2} & =\sum_{i=1}^{n}\left[(n-1)-y_{i}\right]^{2} \\
& =\sum_{i=1}^{n} y_{i}^{2}-2(n-1) \sum_{i=1}^{n} y_{i}+\sum_{i=1}^{n}(n-1)^{2} \\
& =\sum_{i=1}^{n} y_{i}^{2}-n(n-1)^{2}-n(n-1)^{2}=\sum_{i=1}^{n} y_{i}^{2}
\end{aligned}
$$

172. Let $a, b, c, d . e, f$ be different integers. Prove that

$$
(a-b)^{2}+(b-c)^{2}+(c-d)^{2}+(d-e)^{2}+(e-f)^{2}+(f-a)^{2} \geq 18
$$

Solution 1. Since the sum of the differences is 0 , an even number, there must be an even number of odd differences, and therefore an even number of odd squares. If the sum of the squares is less than 18 , then this sum must be one of the numbers $6,8,10,12,14,16$. The only possibilities for expressing any of these numbers as the sum of six nonzero squares is

$$
\begin{gathered}
6=1^{2}+1^{2}+1^{2}+1^{2}+1^{2}+1^{2} \\
12=2^{2}+2^{2}+1^{2}+1^{2}+1^{2}+1^{2} \\
14=3^{3}+1^{2}+1^{2}+1^{2}+1^{2}+1^{2}
\end{gathered}
$$

Taking note that the sum of the differences is zero, the possible sets of differences (up to order and sign) are $\{1,1,1,-1,-1,-1\},\{3,1,-1,-1,-1,-1\},\{2,2,-1,-1,-1,-1\}$. Since the numbers are distinct, the difference between the largest and smallest is at least 5 . This difference must be the sum of differences between adjacent numbers; but checking proves that in each case, an addition of adjacent differences must be less than 5 . Hence, it is not possible to achieve a sum of squares less than 18 . The sum 18 can be found with the set $\{0,1,3,5,4,2\}$.

Solution 2. [A. Critch] We prove a more general result. Let $n$ be a positive integer exceeding 1. Let $\left(t_{1}, t_{2}, \cdots, t_{n-1}, t_{n}\right)$ be an $n$-tple of distinct integers, and suppose that the smallest of these is $t_{n}$. Define
$t_{0}=t_{n}$, and wolog suppose that $t_{0}=t_{n}=0$. Suppose that, for $1 \leq i \leq n, s_{i}=\left|t_{i}-t_{i-1}\right|$. Let the largest integer be $t_{r}$; since the integers are distinct, we must have

$$
\begin{aligned}
n-1 & \leq t_{r}=t_{r}-t_{0}=\left|t_{r}-t_{0}\right| \\
& \leq\left|t_{1}-t_{0}\right|+\cdots+\left|t_{r}-t_{r-1}\right| \\
& =s_{1}+s_{2}+\cdots+s_{r}
\end{aligned}
$$

and

$$
\begin{aligned}
n-1 & \leq t_{r}-t_{0}=\left|t_{n}-t_{r}\right| \\
& \leq\left|t_{r+1}-t_{r}\right|+\cdots+\left|t_{n}-t_{n-1}\right|=s_{r+1}+\cdots+s_{n}
\end{aligned}
$$

Hence.

$$
s_{1}+s_{2}+\cdots+s_{n} \geq 2 n-2
$$

By the root-mean-square, arithmetic mean (RMS-AM) inequality, we have that

$$
\left(\frac{s_{1}^{2}+s_{2}^{2}+\cdots+s_{n}^{2}}{n}\right)^{1 / 2} \geq \frac{s_{1}+s_{2}+\cdots+s_{n}}{n} \geq \frac{2 n-2}{n}
$$

so that

$$
s_{1}^{2}+s_{2}^{2}+\cdots+s_{n}^{2} \geq \frac{4 n^{2}-8 n+4}{n}=4 n-8+\frac{4}{n}
$$

Thus,

$$
\sum_{i=1}^{n} s_{i}^{2} \geq 4 n-8+\lceil 4 / n\rceil
$$

Since the sum of the differences of consecutive $t_{i}$ is zero, and so even, the sum of the squares is even. Since $4 n-8$ is even and $n \geq 2$, and since the sum exceeds $4 n-8$, we see that

$$
\sum_{i=1}^{n} s_{i}^{2} \geq 4 n-8+2=4 n-6
$$

How can this lower bound be achieved? Since it is equal to $2^{2}(n-1)+1^{2}+1^{2}$, we can have $n-2$ differences equal to 2 and 2 differences equal to 1 . Thus, we can start by going up the odd integers, and then come down via the even integers to 0 . In the case of $n=6$, this yields the 6 -tple $(1,3,5,4,2,0)$.
173. Suppose that $a$ and $b$ are positive real numbers for which $a+b=1$. Prove that

$$
\left(a+\frac{1}{a}\right)^{2}+\left(b+\frac{1}{b}\right)^{2} \geq \frac{25}{2} .
$$

Determine when equality holds.
Remark. Before starting, we note that when $a+b=1, a, b>0$, then $a b \leq \frac{1}{4}$. This is an immediate consequence of the arithmetic-geometric means inequality.

Solution 1. By the root-mean-square, arithmetic mean inequality, we have that

$$
\begin{aligned}
\frac{1}{2}\left[\left(a+\frac{1}{a}\right)^{2}+\left(b+\frac{1}{b}\right)^{2}\right] & \geq \frac{1}{4}\left[\left(a+\frac{1}{a}\right)+\left(b+\frac{1}{b}\right)\right]^{2} \\
& =\frac{1}{4}\left(1+\frac{1}{a}+\frac{1}{b}\right)^{2}=\frac{1}{4}\left(1+\frac{1}{a b}\right)^{2} \geq \frac{1}{4} \cdot 5^{2}
\end{aligned}
$$

as desired.

Solution 2. By the RMS-AM inequality and the harmonic-arithmetic means inequality, we have that

$$
\begin{aligned}
a^{2}+b^{2}+(1 / a)^{2}+(1 / b)^{2} & \geq \frac{1}{2}(a+b)^{2}+\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)^{2} \\
& =\frac{1}{2}+2\left[\frac{(1 / a)+(1 / b)}{2}\right]^{2} \\
& \geq \frac{1}{2}+2 \cdot \frac{4}{(a+b)^{2}}=\frac{17}{2}
\end{aligned}
$$

from which the result follows.

## Solution 3.

$$
\begin{aligned}
\left(a+\frac{1}{a}\right)^{2} & +\left(b+\frac{1}{b}\right)^{2} \\
& =a^{2}+b^{2}+\frac{a^{2}+b^{2}}{a^{2} b^{2}}+4 \\
& =(a+b)^{2}-2 a b+\frac{(a+b)^{2}-2 a b}{a^{2} b^{2}}+4 \\
& =5-2 a b+\frac{1}{(a b)^{2}}-\frac{2}{a b} \\
& =4-2 a b+\left(\frac{1}{a b}-1\right)^{2} \geq 4-2\left(\frac{1}{4}\right)+(4-1)^{3}=\frac{25}{2}
\end{aligned}
$$

Solution 4. [F. Feng] From the Cauchy-Schwarz and arithmetic-geometric means inequalities, we find that

$$
\begin{aligned}
{\left[\left(a+\frac{1}{a}\right)^{2}\right.} & \left.+\left(b+\frac{1}{b}\right)^{2}\right]\left[1^{2}+1^{2}\right] \\
& =\left[\left(a+\frac{1}{a}\right)^{2}+\left(b+\frac{1}{b}\right)^{2}\right]\left[(a+b)^{2}+(a+b)^{2}\right] \\
& \geq\left[\left(a+\frac{1}{a}\right)(a+b)+\left(b+\frac{1}{b}\right)(a+b)\right]^{2} \\
& =\left[(a+b)^{2}+2+\left(\frac{a}{b}+\frac{b}{a}\right)\right]^{2} \\
& \geq[1+2+2]^{2}=25
\end{aligned}
$$

The desired result follows.
174. For which real value of $x$ is the function

$$
(1-x)^{5}(1+x)(1+2 x)^{2}
$$

maximum? Determine its maximum value.
Solution 1. The function assumes negative values when $x<-1$ and $x>1$. Accordingly, we need only consider its values on the interval $[-1,1]$. Suppose, first, that $-1 / 2 \leq x \leq 1$, in which case all factors of the function are nonnegative. Then we can note, by the arithmetic-geometric means inequality, that

$$
(1-x)^{5}(1+x)(1+2 x) \leq[(5 / 8)(1-x)+(1 / 8)(1+x)+(2 / 8)(1+2 x)]^{8}=1
$$

with equality if and only if $x=0$. Thus, on the interval $[-1 / 2,1]$, the function takes its maximum value of 1 when $x=0$.

We adopt the same strategy to consider the situation when $-1 \leq x \leq-1 / 2$. For convenience, let $u=-x$, so that the want to maximize

$$
(1+u)^{5}(1-u)(2 u-1)^{2}
$$

for $1 / 2 \leq u \leq 1$. In fact, we are going to maximize

$$
[\alpha(1+u)]^{5}[\beta(1-u)][\gamma(2 u-1)]^{2}
$$

where $\alpha, \beta$ and $\gamma$ are positive integers to be chosen to make $5 \alpha-\beta+4 \gamma=0$ (so that when we calculate the airthmetic mean of the eight factors, the coefficient of $u$ will vanish), and $\alpha(1+u)=\beta(1-u)=\gamma(2 u-1)$ (so that we can actually find a case where equality will occur). The latter conditions forces

$$
\frac{\beta-\alpha}{\beta+\alpha}=\frac{\beta+\gamma}{2 \gamma+\beta}
$$

or $\beta \gamma=3 \alpha \gamma+2 \alpha \beta$. Plugging $\beta=5 \alpha+4 \gamma$ into this yields that

$$
0=2\left(3 \alpha \gamma+5 \alpha^{2}-2 \gamma^{2}\right)=2(5 \alpha-2 \gamma)(\alpha+\gamma)
$$

Thus, let us take $(\alpha, \beta, \gamma)=(2,30,5)$. Then, by the arithmetic-geometric means inequality, we obtain that

$$
\begin{aligned}
{[2(1+u)]^{5 / 8}[30(1-u)]^{1 / 8} } & {[5(2 u-1)]^{1 / 4} } \\
& \leq \frac{5}{4}(1+u)+\frac{15}{4}(1-u)+\frac{5}{4}(2 u-1)=\frac{15}{4}
\end{aligned}
$$

with equality if and only if $2(1+u)=30(1-u)=5(2 u-1)$, i.e., $u=7 / 8$. Hence,

$$
\begin{aligned}
(1-x)^{5}(1+x)(1+2 x)^{5} & =(1+u)^{5}(1-u)(1-2 u)^{2} \\
& \leq\left(\frac{15}{8}\right)^{8} 2^{-5 / 8} 30^{-1} 5^{-2} \\
& =\frac{3^{7} \times 5^{5}}{2^{22}}=\left(\frac{15}{16}\right)^{5}\left(\frac{9}{4}\right)
\end{aligned}
$$

with equality if and only if $x=-7 / 8$.
It remains to show whether the value of the function when $x=-7 / 8$ exceeds its value when $x=0$. Recall the Bernoulli inequality: $(1+x)^{n}>1+n x$ for $-1<x, x \neq 0$ and positive integer $n$. This can be established by induction (do it!). Using this, we find that

$$
\left(\frac{15}{16}\right)^{5}\left(\frac{9}{4}\right)>\left(1-\frac{5}{16}\right) \times 2=\frac{22}{16}>1
$$

Thus, the function assumes its maximum value of $3^{7} \times 5^{5} \times 2^{-22}$ when $x=-7 / 8$.
Solution 2. Let $f(x)=(1-x)^{5}(1+x)(1+2 x)^{2}$. Then $f^{\prime}(x)=-2(1-x)^{4}(1+2 x) x(7+8 x)$. We see that $f^{\prime}(x)>0$ if and only if $x<-7 / 8$ or $-1 / 2<x<0$. Hence $f(x)$ has relative maxima only when $x=-7 / 8$ and $x=0$. Checking these two candidates tells us that the absolute maximum of $3^{7} \times 5^{5} \times 2^{-22}$ occurs when $x=-7 / 8$.
175. $A B C$ is a triangle such that $A B<A C$. The point $D$ is the midpoint of the arc with endpoints $B$ and $C$ of that arc of the circumcircle of $\triangle A B C$ that contains $A$. The foot of the perpendicular from $D$ to $A C$ is $E$. Prove that $A B+A E=E C$.

Solution 1. Draw a line through $D$ parallel to $A C$ that intersects the circumcircle again at $F$. Let $G$ be the foot of the perpendicular from $F$ to $A C$. Then $D E G F$ is a rectangle. Since arc $B D$ is equal to arc $D C$, and since $\operatorname{arc} A D$ is equal to $\operatorname{arc} F C$ (why?), arc $B A$ is equal to arc $D F$. Therefore the chords of these arcs are equal, so that $A B=D F=E G$. Hence $A B+A E=E G+G C=E C$.

Solution 2. Note that the length of the shorter arc $A D$ is less than the length of the shorter arc $D C$. Locate a point $H$ on the chord $A C$ so that $A D=H D$. Consider triangles $A B D$ and $H C D$. We have that $A D=D H, B D=C D$ and $\angle A B D=\angle H C D$. This is a case of SSA congruence, the ambiguous case. Since angles $B A D$ and $D H C$ are both obtuse (why?), they must be equal rather the supplementary, and the triangles $A B D$ and $H C D$ are congruent. (Congruence can also be established using the Law of Sines.) In particular, $A B=H C$. Since triangle $A D H$ is isosceles, $E$ is the midpoint of $A H$, so that $A B+A E=H C+E H=E C$.

Solution 3. Let $D M$ be a diameter of the circumcircle, so that $M$ is the midpoint of one of the arcs $B C$. Let $H$ be that point on the chord $A C$ for which $D A=D H$ and let $D H$ be produced to meet the circle again in $K$. Since $\angle M A D=\angle D E A=90^{\circ}$, it follows that $\angle M A C=90^{\circ}-\angle E A D=\angle A D E$. Since $A M$ and $D E$ are both angle bisectors, $\angle B A C=\angle A D H$.

Because $A D C K$ is concyclic, triangles $A D H$ and $K C H$ are similar, so that $H C=C K$. From the equality of angles $B A C$ and $A C K$, we deduce the equality of the $\operatorname{arcs} B A C$ and $A C K$, and so the equality of the $\operatorname{arcs} B A$ and $C K$. Hence $A B=C K=H C$. Therefore $A B+A E=H C+E H=E C$.

Solution 4. [R. Shapiro] Since $A$ lies on the short arc $B D, \angle B A D$ is obtuse. Hence the foot of the perpendicular from $D$ to $B A$ produced is outside of the circumcircle of triangle $A B C$. In triangles $K B D$ and $E C D, \angle B K D=\angle D E C=90^{\circ}, \angle K B D=\angle A B D=\angle A C D$ and $B D=C D$. Hence the triangles $K B D$ and $E C D$ are congruent, so that $D K=D E$ and $B K=E C$. Since the triangle $A D K$ and $A D E$ are right with a common hypotenuse $A D$ and equal legs $D K$ and $D E$, they are congruent and $A K=A E$. Hence $E C=B K=B A+A K=B A+A E$, as desired .
176. Three noncollinear points $A, M$ and $N$ are given in the plane. Construct the square such that one of its vertices is the point $A$, and the two sides which do not contain this vertex are on the lines through $M$ and $N$ respectively. [Note: In such a problem, your solution should consist of a description of the construction (with straightedge and compasses) and a proof in correct logical order proceeding from what is given to what is desired that the construction is valid. You should deal with the feasibility of the construction.]

Solution 1. Construction. Draw the circle with diameter $M N$ and centre $O$. This circle must contain the point $C$, as $M C$ and $N C$ are to be perpendicular. Let the right bisector of $M N$ meet the circle in $K$ and $L$. Join $A K$ and, if necessary, produce it to meet the circle at $C$. Now draw the circle with diameter $A C$ and let it meet the right bisector of $A C$ at $B$ and $D$. Then $A B C D$ is the required rectangle. There are two options, depending how we label the right bisector $K L$.

However, the construction does not work if $A$ actually lies on the circle with diameter $M N$. In this case, $A$ and $C$ would coincide and the situation degenerates. If $A$ lies on the right bisector of $M N$, then $C$ can be the other point where the right bisector intersects the circle, and $M$ and $N$ can be the other two vertices of the square. If $A$ is not on the right bisector, then there is no square; all of the points $A, M, C, N$ would have to be on the circle, and $A M$ and $A N$ would have to subtend angles of $45^{\circ}$ at $C$, which is not possible.

Proof. If $C$ and $O$ are on the same side of $K N$, then $\angle K C N=\frac{1}{2} \angle K O N=45^{\circ}$, so that $C N$ makes an angle of $45^{\circ}$ with $A C$ produced, and so $C N$ produced contains a side of the square. Similarly, $C M$ produced contains a side of the square. If $C$ and $O$ are on opposite sides of $K N$, then $\angle K C N=135^{\circ}$, and $C N$ still makes an angle of $45^{\circ}$ with $A C$ produced; the argument can be completed as before.

Solution 2. Construction. Construct circle of diameter $M N$. Draw $A M=M R$ (with the segment $M R$ intersecting the interior of the circle) and $A M \perp M R$. Construct the circle $A M R$. Let this circle intersect the given circle at $C$. Then construct the square with diagonal $A C$. If $A$ lies on the circle, then
the candidates for $C$ are $A$ and $M$. We cannot take $C=A$, as the situation degererates; if we take $C=M$, then the angle $A C M$ and segment $C M$ degenerate. We can complete the analysis as in the first solution.

Proof. Since $\triangle A R M$ is right isosceles, $\angle A R M=45^{\circ}$. Hence the circle is the locus of points at which $A M$ subtends an angle equal to $45^{\circ}$ or $135^{\circ}$. Hence the lines $A C$ and $C M$ intersect at an angle of $45^{\circ}$. Since $\angle M C N=90^{\circ}$, the lines $A C$ and $C N$ also intersect at $45^{\circ}$. It follows that the remaining points on the square with diagonal $A C$ must lie on the lines $C M$ and $C N$.
177. Let $a_{1}, a_{2}, \cdots, a_{n}$ be nonnegative integers such that, whenever $1 \leq i, 1 \leq j, i+j \leq n$, then

$$
a_{i}+a_{j} \leq a_{i+j} \leq a_{i}+a_{j}+1
$$

(a) Give an example of such a sequence which is not an arithmetic progression.
(b) Prove that there exists a real number $x$ such that $a_{k}=\lfloor k x\rfloor$ for $1 \leq k \leq n$.
(a) Solution. [R. Marinov] For positive integers $n$, let $a_{n}=k-1$ when $n=2 k$ and $a_{n}=k$ when $n=2 k+1$, so that the sequence is $\{0,1,1,2,2,3,3, \cdots\}$. Observe that

$$
\begin{gathered}
a_{(2 p+1)+(2 q+1)}=a_{2(p+q+1)}=p+q=a_{2 p+1}+a_{2 q+1} \\
a_{2 p+2 q}=a_{2(p+q)}=p+q-1=(p-1)+(q-1)+1=a_{2 p}+a_{2 q}+1
\end{gathered}
$$

and

$$
a_{2 p+(2 q+1)}=a_{2(p+q)+1}=p+q=(p-1)+q+1=a_{2 p}+a_{2 q+1}
$$

for positive integers $p$ and $q$, whence we see that this sequence satisfies the condition. The corresponding value of $x$ is $1 / 2$.

Solution. [A. Critch] The assertion to be proved is that all the semi-closed intervals $\left[a_{k} / k, a_{k+1} / k\right.$ ) have a point in common. Suppose, if possible, that this fails. Then there must be a pair $(p, q)$ of necessarily distinct integers for which $a_{q} / q \geq\left(a_{p}+1\right) / p$. This is equivalent to $p a_{q} \geq q a_{p}+q$. Suppose that the sum of these two indices is as small as possible.

Suppose that $p>q$, so that $p=q+r$ for some positive $r$. Then

$$
(q+r) a_{q} \geq q a_{p}+q=q a_{q+r}+q \geq q a_{q}+q a_{r}+q
$$

whence $r a_{q} \geq q a_{r}+q$ and $a_{q} / q \geq\left(a_{r}+1\right) / r$. Thus $p$ and $r$ have the property of $p$ and $q$ and we get a contradiction of the minimality condition.

Suppose that $p<q$, so that $q=p+s$ for some positive $s$. Then

$$
p+p a_{p}+p a_{s} \geq p a_{p+s} \geq(p+s) a_{p}+q=p a_{p}+s a_{p}+q
$$

so that $p+p a_{s} \geq s a_{p}+q>s a_{p}+p+s, p a_{s} \geq s a_{p}+s$ and $a_{s} / s \geq\left(a_{p}+1\right) / p$, once again contradicting the minimality condition.

