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276. Let a, b, c be the lengths of the sides of a triangle and let s = 1
2 (a + b + c) be its semi-perimeter and r

be the radius of the inscribed circle. Prove that

(s− a)−2 + (s− b)−2 + (s− c)−2 ≥ r−2

and indicate when equality holds.

277. Let m and n be positive integers for which m < n. Suppose that an arbitrary set of n integers is given
and the following operation is performed: select any m of them and add 1 to each. For which pairs
(m,n) is it always possible to modify the given set by performing the operation finitely often to obtain
a set for which all the integers are equal?

278. (a) Show that 4mn −m − n can be an integer square for infinitely many pairs (m,n) of integers. Is it
possible for either m or n to be positive?

(b) Show that there are infinitely many pairs (m,n) of positive integers for which 4mn−m− n is one
less than a perfect square.

279. (a) For which values of n is it possible to construct a sequence of abutting segments in the plane to form
a polygon whose side lengths are 1, 2, · · · , n exactly in this order, where two neighbouring segments are
perpendicular?

(b) For which values of n is it possible to construct a sequence of abutting segments in space to form
a polygon whose side lengths are 1, 2, · · · , n exactly in this order, where any two of three sucessive
segments are perpendicular?

280. Consider all finite sequences of positive integers whose sum is n. Determine T (n, k), the number of
times that the positive integer k occurs in all of these sequences taken together.

281. Let a be the result of tossing a black die (a number cube whose sides are numbers from 1 to 6 inclusive),
and b the result of tossing a white die. What is the probability that there exist real numbers x, y, z for
which x + y + z = a and xy + yz + zx = b?

282. Suppose that at the vertices of a pentagon five integers are specified in such a way that the sum of the
integers is positive. If not all the integers are non-negative, we can perform the following operation:
suppose that x, y, z are three consecutive integers for which y < 0; we replace them respectively by the
integers x + y,−y, z + y. In the event that there is more than one negative integer, there is a choice of
how this operation may be performed. Given any choice of integers, and any sequence of operations,
must we arrive at a set of nonnegative integers after a finite number of steps?

For example, if we start with the numbers (2,−3, 3,−6, 7) around the pentagon, we can produce
(1, 3, 0,−6, 7) or (2,−3,−3, 6, 1).
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