Solutions.

304. Prove that, for any complex numbers z and w,

$$
(|z|+|w|)\left|\frac{z}{|z|}+\frac{w}{|w|}\right| \leq 2|z+w|
$$

Solution 1.

$$
\begin{aligned}
(|z|+|w|) \mid & \left|\frac{z}{|z|}+\frac{w}{|w|}\right| \\
& =\left|z+w+\frac{|z| w}{|w|}+\frac{|w| z \mid}{|z|}\right| \\
& \leq|z+w|+\frac{1}{|z||w|}|\bar{z} z w+\bar{w} z w| \\
& =|z+w|+\frac{|z w|}{|z||w|}|\bar{z}+\bar{w}|=2|z+w|
\end{aligned}
$$

Solution 2. Let $z=a e^{i \alpha}$ and $w=b e^{i \beta}$, with a and b real and positive. Then the left side is equal to

$$
\begin{aligned}
\left|(a+b)\left(e^{i \alpha}+e^{i \beta}\right)\right| & =\left|a e^{i \alpha}+a e^{i \beta}+b e^{i \alpha}+b e^{i \beta}\right| \\
& \leq\left|a e^{i \alpha}+b e^{i \beta}\right|+\left|a e^{i \beta}+b e^{i \alpha}\right|
\end{aligned}
$$

Observe that

$$
\begin{aligned}
|z+w|^{2} & =\left|\left(a e^{i \alpha}+b e^{i \beta}\right)\left(a e^{-i \alpha}+b e^{-i \beta}\right)\right| \\
& =a^{2}+b^{2}+a b\left[e^{i(\alpha-\beta)}+e^{i(\beta-\alpha)}\right] \\
& =\left|\left(a e^{i \beta}+b e^{i \alpha}\right)\left(a e^{-i \beta}+b e^{-i \alpha}\right)\right|
\end{aligned}
$$

from which we find that the left side does not exceed

$$
\left|a e^{i \alpha}+b e^{i \beta}\right|+\left|a e^{i \beta}+b e^{i \alpha}\right|=2\left|a e^{i \alpha}+b e^{i \beta}\right|=2|z+w|
$$

Solution 3. Let $z=a e^{i \alpha}$ and $w=b e^{i \beta}$, where a and b are positive reals. Then the inequality is equivalent to

$$
\left|\frac{1}{2}\left(e^{i \alpha}+e^{i \beta}\right)\right| \leq\left|\lambda e^{i \alpha}+(1-\lambda) e^{i \beta}\right|
$$

where $\lambda=a /(a+b)$. But this simply says that the midpoint of the segment joining $e^{i \alpha}$ and $e^{i \beta}$ on the unit circle in the Argand diagram is at least as close to the origin as another point on the segment.

Solution 4. [G. Goldstein] Observe that, for each $\mu \in \mathbf{C}$,

$$
\begin{aligned}
\left|\frac{\mu z}{|\mu z|}+\frac{\mu w}{|\mu w|}\right| & =\left|\frac{z}{|z|}+\frac{w}{|w|}\right| \\
|\mu|[|z|+|w|] & =|\mu z+\mu w|
\end{aligned}
$$

and

$$
|\mu||z+w|=|\mu z+\mu w|
$$

So the inequality is equivalent to

$$
(|t|+1)\left|\frac{t}{|t|}+1\right| \leq 2|t+1|
$$

for $t \in \mathbf{C}$. (Take $\mu=1 / w$ and $t=z / w$.)
Let $t=r(\cos \theta+i \sin \theta)$. Then the inequality becomes

$$
(r+1) \sqrt{(\cos \theta+1)^{2}+\sin ^{2} \theta} \leq 2 \sqrt{(r \cos \theta+1)^{2}+r^{2} \sin ^{2} \theta}=2 \sqrt{r^{2}+2 r \cos \theta+1}
$$

Now,

$$
\begin{aligned}
4\left(r^{2}+2 r \cos \theta+1\right) & -(r+1)^{2}(2+2 \cos \theta) \\
& =2 r^{2}(1-\cos \theta)+4 r(\cos \theta-1)+2(1-\cos \theta) \\
& =2(r-1)^{2}(1-\cos \theta) \geq 0
\end{aligned}
$$

from which the inequality follows.
Solution 5. [R. Mong] Consider complex numbers as vectors in the plane. $q=(|z| /|w|) w$ is a vector of magnitude z in the direction w and $p=(|w| /|z|) z$ is a vector of magnitude w in the direction z. A reflection about the angle bisector of vectors z and w interchanges p and w, q and z. Hence $|p+q|=|w+z|$. Therefore

$$
\begin{aligned}
& (|z|+|w|)\left|\frac{z}{|z|}+\frac{w}{|w|}\right| \\
& \quad=|z+q+p+w| \leq|z+w|+|p+q| \\
& \\
& \quad=2|z+w|
\end{aligned}
$$

305. Suppose that u and v are positive integer divisors of the positive integer n and that $u v<n$. Is it necessarily so that the greatest common divisor of n / u and n / v exceeds 1 ?

Solution 1. Let $n=u r=v s$. Then $u v<n \Rightarrow v<r, u<s$, so that $n^{2}=u v r s \Rightarrow r s>n$. Let the greatest common divisor of r and s be g and the least common multiple of r and s be m. Then $m \leq n<r s=g m$, so that $g>1$.

Solution 2. Let $g=\operatorname{gcd}(u, v), u=g s$ and $v=g t$. Then $g s t \leq g^{2} s t<n$ so that $s t<n / g$. Now s and t are a coprime pair of integers, each of which divides n / g. Therefore, $n / g=d s t$ for some $d>1$. Therefore $n / u=n /(g s)=d t$ and $n / v=n /(g t)=d s$, so that n / u and n / v are divisible by d, and so their greatest common divisor exceeds 1 .

Solution 3. $u v<n \Longrightarrow n u v<n^{2} \Longrightarrow n<(n / u)(n / v)$. Suppose, if possible, that n / u and n / v have greatest common divisor 1 . Then the least common multiple of n / u and n / v must equal $(n / u)(n / v)$. But n is a common multiple of n / u and n / v, so that $(n / u)(n / v) \leq n$, a contradiction. Hence the greatest common divisor of n / u and n / v exceeds 1 .

Solution 4. Let P be the set of prime divisors of n, and for each $p \in P$. Let $\alpha(p)$ be the largest integer k for which p^{k} divides n. Since u and v are divisors of n, the only prime divisors of either u or v must belong to P. Suppose that $\beta(p)$ is the largest value of the integer k for which p^{k} divides $u v$.

If $\beta(p) \geq \alpha(p)$ for each $p \in P$, then n would divide $u v$, contradicting $u v<n$. (Note that $\beta(p)>\alpha(p)$ may occur for some p.) Hence there is a prime $q \in P$ for which $\beta(q)<\alpha(q)$. Then $q^{\alpha(q)}$ is not a divisor of either u or v, so that q divides both n / u and n / v. Thus, the greatest common divisor of n / u and n / v exceeds 1.

Solution 5. [D. Shirokoff] If n / u and n / v be coprime, then there are integers x and y for which $(n / u) x+(n / v)=1$, whence $n(x v+y u)=u v$. Since n and $u v$ are positive, then so is the integer $x v+y u$. But $u v<n \Longrightarrow 0<x v+y u<1$, an impossibility. Hence the greatest common divisor of n / u and n / v exceeds 1.
306. The circumferences of three circles of radius r meet in a common point O. They meet also, pairwise, in the points P, Q and R. Determine the maximum and minimum values of the circumradius of triangle $P Q R$.

Answer. The circumradius always has the value r.
Solution 1. [M. Lipnowski] $\angle Q P O=\angle Q R O$, since $O Q$ is a common chord of two congruent circles, and so subtends equal angles at the respective circumferences. (Why are angle $Q P O$ and $Q R O$ not supplementary?) Similarly, $\angle O P R=\angle O Q R$. Let P^{\prime} be the reflected image of P in the line $Q R$ so that triangle $P^{\prime} Q R$ and $P Q R$ are congruent. Then

$$
\begin{aligned}
\angle Q P^{\prime} R+\angle Q O R & =\angle Q P R+\angle Q O R=\angle Q P O+\angle R P O+\angle Q O R \\
& =\angle Q R O+\angle O Q R+\angle Q O R=180^{\circ} .
\end{aligned}
$$

Hence P^{\prime} lies on the circle through $O Q R$, and this circle has radius r. Hence the circumradius of $P Q R$ equals the circumradius of $P^{\prime} Q R$, namely r.

Solution 2. [P. Shi; A. Wice] Let U, V, W be the centres of the circle. Then $O V P W$ is a rhombus, so that $O P$ and $V W$ intersect at right angles. Let H, J, K be the respective intersections of the pairs $(O P, V W)$, $(O Q, U W),(O P, U V)$. Then H (respectively $J, K)$ is the midpoint of $O P$ and $V W$ (respectively $O Q$ and $U W, O P$ and $U V)$. Triangle $P Q R$ is carried by a dilation with centre O and factor $\frac{1}{2}$ onto $H J K$. Also, $H J K$ is similar with factor $\frac{1}{2}$ to triangle $U V W$ (determined by the midlines of the latter triangle). Hence triangles $P Q R$ and $U V W$ are congruent. But the circumcircle of triangle $U V W$ has centre O and radius r, so the circumradius of triangle $P Q R$ is also r.

Solution 3. [G. Zheng] Let U, V, W be the respective centres of the circumcircles of $O Q R, O R P, O P Q$. Place O at the centre of coordinates so that

$$
\begin{aligned}
& U \sim(r \cos \alpha, r \sin \alpha) \\
& V \sim(r \cos \beta, r \sin \beta) \\
& W \sim(r \cos \gamma, r \sin \gamma)
\end{aligned}
$$

for some α, β, γ. Since $O V P W$ is a rhombus,

$$
P \sim(r(\cos \beta+\cos \gamma), r(\sin \beta+\sin \gamma))
$$

Similarly, $Q \sim(r(\cos \alpha+\cos \gamma), r(\sin \alpha+\sin \gamma)$, so that

$$
|P Q|=r \sqrt{(\cos \beta-\cos \alpha)^{2}+(\sin \beta-\sin \alpha)^{2}}=|U V|
$$

Similarly, $|P R|=|U W|$ and $|Q R|=|V W|$. Thus, triangles $P Q R$ and $U V W$ are congruent. Since O is the circumcentre of triangle $U V W$, the circumradius of triangle $P Q R$ equals the circumradius of triangle $U V W$ which equals r.

Solution 4. Let U, V, W be the respective centres of the circles $Q O R, R O P, P O Q$. Suppose that $\angle O V R=2 \beta$; then $\angle O P R=\beta$. Suppose that $\angle O W Q=2 \gamma$; then $\angle O P Q=\gamma$. Hence $\angle Q P R=\beta+\gamma$. Let ρ be the circumradius of triangle $P Q R$. Then $|Q R|=2 \rho \sin (\beta+\gamma)$.

Consider triangle $Q U R$. The reflection in the axis $O Q$ takes W to U so that $\angle Q U O=\angle Q W O=2 \gamma$. Similarly, $\angle R U O=2 \gamma$, whence $\angle Q U R=2(\beta+\gamma)$. Thus triangle $Q U R$ is isosceles with $|Q U|=|Q R|=r$ and apex angle $Q U R$ equal to $2(\beta+\gamma)$. Hence $|Q R|=2 r \sin (\beta+\gamma)$. It follows that $\rho=r$.

Comment. This problem was the basis of the logo for the 40th International Mathematical Olympiad held in 1999 in Romania.
307. Let p be a prime and m a positive integer for which $m<p$ and the greatest common divisor of m and p is equal to 1 . Suppose that the decimal expansion of m / p has period $2 k$ for some positive integer k, so that

$$
\frac{m}{p}=. A B A B A B A B \ldots=\left(10^{k} A+B\right)\left(10^{-2 k}+10^{-4 k}+\cdots\right)
$$

where A and B are two distinct blocks of k digits. Prove that

$$
A+B=10^{k}-1
$$

(For example, $3 / 7=0.428571 \ldots$ and $428+571=999$.)
Solution. We have that

$$
\frac{m}{p}=\frac{10^{k} A+B}{10^{2 k}-1}=\frac{10^{k} A+B}{\left(10^{k}-1\right)\left(10^{k}+1\right)}
$$

whence

$$
m\left(10^{k}-1\right)\left(10^{k}+1\right)=p\left(10^{k} A+B\right)=p\left(10^{k}-1\right) A+p(A+B)
$$

Since the period of m / p is $2 k, A \neq B$ and p does not divide $10^{k}-1$. Hence $10^{k}-1$ and p are coprime and so $10^{k}-1$ must divide $A+B$. However, $A \leq 10^{k}-1$ and $B \leq 10^{k}-1$ (since both A and B have k digits), and equality can occur at most once. Hence $A+B<2 \times 10^{k}-2=2\left(10^{k}-1\right)$. It follows that $A+B=10^{k}-1$ as desired.

Comment. This problem appeared in the College Mathematics Journal 35 (2004), 26-30. In writing up the solution, it is clearer to set up the equation and clear fractions, so that you can argue in terms of factors of products.
308. Let a be a parameter. Define the sequence $\left\{f_{n}(x): n=0,1,2, \cdots\right\}$ of polynomials by

$$
\begin{gathered}
f_{0}(x) \equiv 1 \\
f_{n+1}(x)=x f_{n}(x)+f_{n}(a x)
\end{gathered}
$$

for $n \geq 0$.
(a) Prove that, for all n, x,

$$
f_{n}(x)=x^{n} f_{n}(1 / x)
$$

(b) Determine a formula for the coefficient of $x^{k}(0 \leq k \leq n)$ in $f_{n}(x)$.

Solution 1. The polynomial $f_{n}(x)$ has degree n for each n, and we will write

$$
f_{n}(x)=\sum_{k=0}^{n} b(n, k) x^{k}
$$

Then

$$
x^{n} f_{n}(1 / x)=\sum_{k=0}^{n} b(n, k) x^{n-k}=\sum_{k=0}^{n} b(n, n-k) x^{k} .
$$

Thus, (a) is equivalent to $b(n, k)=b(n, n-k)$ for $0 \leq k \leq n$.
When $a=1$, it can be established by induction that $f_{n}(x)=(x+1)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n}$. Also, when $a=0, f_{n}(x)=x^{n}+x^{n-1}+\cdots+x+1=\left(x^{n+1}-1\right)(x-1)^{-1}$. Thus, (a) holds in these cases and $b(n, k)$ is respectively equal to $\binom{n}{k}$ and 1 .

Suppose, henceforth, that $a \neq 1$. For $n \geq 0$,

$$
\begin{aligned}
f_{n+1}(k) & =\sum_{k=0}^{n} b(n, k) x^{k+1}+\sum_{k=0}^{n} a^{k} b(n, k) x^{k} \\
& =\sum_{k=1}^{n} b(n, k-1) x^{k}+b(n, n) x^{n+1}+b(n, 0)+\sum_{k=1}^{n} a^{k} b(n, k) x^{k} \\
& =b(n, 0)+\sum_{k=1}^{n}\left[b(n, k-1)+a^{k} b(n, k)\right] x^{k}+b(n, n) x^{n+1}
\end{aligned}
$$

whence $b(n+1,0)=b(n, 0)=b(1,0)$ and $b(n+1, n+1)=b(n, n)=b(1,1)$ for all $n \geq 1$. Since $f_{1}(x)=x+1$, $b(n, 0)=b(n, n)=1$ for each n. Also

$$
\begin{equation*}
b(n+1, k)=b(n, k-1)+a^{k} b(n, k) \tag{1}
\end{equation*}
$$

for $1 \leq k \leq n$.
We conjecture what the coefficients $b(n, k)$ are from an examination of the first few terms of the sequence:

$$
\begin{gathered}
f_{0}(x)=1 ; \quad f_{1}(x)=1+x ; \quad f_{2}(x)=1+(a+1) x+x^{2} \\
f_{3}(x)=1+\left(a^{2}+a+1\right) x+\left(a^{2}+a+1\right) x^{2}+x^{3} \\
f_{4}(x)=1+\left(a^{3}+a^{2}+a+1\right) x+\left(a^{4}+a^{3}+2 a^{2}+a+1\right) x^{2}+\left(a^{3}+a^{2}+a+1\right) x^{3}+x^{4} \\
f_{5}(x)=\left(1+x^{5}\right)+\left(a^{4}+a^{3}+a^{2}+a+1\right)\left(x+x^{4}\right)+\left(a^{6}+a^{5}+2 a^{4}+2 a^{3}+2 a^{2}+a+1\right)\left(x^{2}+x^{3}\right)
\end{gathered}
$$

We make the empirical observation that

$$
\begin{equation*}
b(n+1, k)=a^{n+1-k} b(n, k-1)+b(n, k) \tag{2}
\end{equation*}
$$

which, with (1), yields

$$
\left(a^{n+1-k}-1\right) b(n, k-1)=\left(a^{k}-1\right) b(n, k)
$$

so that

$$
b(n+1, k)=\left[\frac{a^{k}-1}{a^{n+1-k}-1}+a^{k}\right] b(n, k)=\left[\frac{a^{n+1}-1}{a^{n+1-k}-1}\right] b(n, k)
$$

for $n \geq k$. This leads to the conjecture that

$$
\begin{equation*}
b(n, k)=\left(\frac{\left(a^{n}-1\right)\left(a^{n-1}-1\right) \cdots\left(a^{k+1}-1\right)}{\left(a^{n-k}-1\right)\left(a^{n-k-1}-1\right) \cdots(a-1)}\right) b(k, k) \tag{3}
\end{equation*}
$$

where $b(k, k)=1$.
We establish this conjecture. Let $c(n, k)$ be the right side of (3) for $1 \leq k \leq n-1$ and $c(n, n)=1$. Then $c(n, 0)=b(n, 0)=c(n, n)=b(n, n)=1$ for each n. In particular, $c(n, k)=b(n, k)$ when $n=1$.

We show that

$$
c(n+1, k)=c(n, k-1)+a^{k} c(n, k)
$$

for $1 \leq k \leq n$, which will, through an induction argument, imply that $b(n, k)=c(n, k)$ for $0 \leq k \leq n$. The right side is equal to

$$
\left(\frac{a^{n}-1}{a^{n-k}-1}\right) \cdots\left(\frac{a^{k+1}-1}{a-1}\right)\left[\frac{a^{k}-1}{a^{n-k+1}-1}+a^{k}\right]=\frac{\left(a^{n+1}-1\right)\left(a^{n}-1\right) \cdots\left(a^{k+1}-1\right)}{\left(a^{n+1-k}-1\right)\left(a^{n-k}-1\right) \cdots(a-1)}=c(n+1, k)
$$

as desired. Thus, we now have a formula for $b(n, k)$ as required in (b).
Finally, (a) can be established in a straightforward way, either from the formula (3) or using the pair of recursions (1) and (2).

Solution 2. (a) Observe that $f_{0}(x)=1, f_{1}(x)=x+1$ and $f_{1}(x)-f_{0}(x)=x=a^{0} x f_{0}(x / a)$. Assume as an induction hypothesis that $f_{k}(x)=x^{k} f(1 / x)$ and

$$
f_{k}(x)-f_{k-1}(x)=a^{k-1} x f_{k-1}(x / a)
$$

for $0 \leq k \leq n$. This holds for $k=1$.

Then

$$
\begin{aligned}
f_{n+1}(x)-f_{n}(x) & =x\left[f_{n}(x)-f_{(n-1)}(x)\right]+\left[f_{n}(a x)-f_{n-1}(a x)\right] \\
& =a^{n-1} x^{2} f_{n-1}(x / a)+a^{n-1} a x f_{n-1}(x) \\
& =a^{n} x\left[f_{n-1}(x)+(x / a) f_{n-1}(x / a)=a^{n} x f_{n}(x / a),\right.
\end{aligned}
$$

whence

$$
\begin{aligned}
f_{n+1}(x) & =f_{n}(x)+a^{n} x f_{n}(x / a)=f_{n}(x)+a^{n} x(x / a)^{n} f_{n}(a / x) \\
& =x^{n} f_{n}(1 / x)+x^{n+1} f_{n}(a / x)=x^{n+1}\left[(1 / x) f_{n}(1 / x)+f_{n}(a / x)\right]=x^{n+1} f_{n+1}(1 / x) .
\end{aligned}
$$

The desired result follows.
Comment. Because of the appearance of the factor $a-1$ in denominators, you should dispose of the case $a=1$ separately. Failure to do so on a competition would likely cost a mark.
309. Let $A B C D$ be a convex quadrilateral for which all sides and diagonals have rational length and $A C$ and $B D$ intersect at P. Prove that $A P, B P, C P, D P$ all have rational length.

Solution 1. Because of the symmetry, it is enough to show that the length of $A P$ is rational. The rationality of the lengths of the remaining segments can be shown similarly. Coordinatize the situation by taking $A \sim(0,0), B \sim(p, q), C \sim(c, 0), D \sim(r, s)$ and $P \sim(u, 0)$. Then, equating slopes, we find that

$$
\frac{s}{r-u}=\frac{s-q}{r-p}
$$

so that

$$
\frac{s r-p s}{s-q}=r-u
$$

whence $u=r-\frac{s r-p s}{s-q}=\frac{p s-q r}{s-q}$.
Note that $|A B|^{2}=p^{2}+q^{2},|A C|^{2}=c^{2},|B C|^{2}=\left(p^{2}-2 p c+c^{2}\right)+q^{2},|C D|^{2}=\left(c^{2}-2 c r+r^{2}\right)+s^{2}$ and $|A D|^{2}=r^{2}+s^{2}$, we have that

$$
2 r c=A C^{2}+A D^{2}-C D^{2}
$$

so that, since c is rational, r is rational. Hence s^{2} is rational.
Similarly

$$
2 p c=A C^{2}+A B^{2}-B C^{2}
$$

Thus, p is rational, so that q^{2} is rational.

$$
2 q s=q^{2}+s^{2}-(q-s)^{2}=q^{2}+s^{2}-\left[(p-r)^{2}+(q-s)^{2}\right]+p^{2}-2 p r+r^{2}
$$

is rational, so that both $q s$ and $q / s=(q s) / s^{2}$ are rational. Hence

$$
u=\frac{p-r(q / s)}{1-(q / s)}
$$

is rational.
Solution 2. By the cosine law, the cosines of all of the angles of the triangle $A C D, B C D, A B C$ and $A B D$ are rational. Now

$$
\frac{A P}{A B}=\frac{\sin \angle A B P}{\sin \angle A P B}
$$

and

$$
\frac{C P}{B C}=\frac{\sin \angle P B C}{\sin \angle B P C}
$$

Since $\angle A P B+\angle B P C=180^{\circ}$, therefore $\sin \angle A P B=\sin \angle B P C$ and

$$
\begin{aligned}
\frac{A P}{C P} & =\frac{A B \sin \angle A B P}{B C \sin \angle P B C}=\frac{A B \sin \angle A B P \sin \angle P B C}{B C \sin ^{2} \angle P B C} \\
& =\frac{A B(\cos \angle A B P \cos \angle P B C-\cos (\angle A B P+\angle P B C))}{B C\left(1-\cos ^{2} \angle P B C\right)} \\
& =\frac{A B(\cos \angle A B D \cos \angle D B C-\cos \angle A B C)}{B C\left(1-\cos ^{2} \angle D B C\right)}
\end{aligned}
$$

is rational. Also $A P+C P$ is rational, so that $(A P / C P)(A P+C P)=((A P / C P)+1) A P$ is rational. Hence $A P$ is rational.
310. (a) Suppose that n is a positive integer. Prove that

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x(x+k)^{k-1}(y-k)^{n-k}
$$

(b) Prove that

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x(x-k z)^{k-1}(y+k z)^{n-k}
$$

Comments. (a) and (b) are equivalent. To obtain (b) from (a), replace x by $-x / z$ and y by $-y / z$. On the other hand, the substitution $z=-1$ yields (a) from (b).

The establishment of the identities involves the recognition of a certain sum which arise in the theory of finite differences. Let $f(x)$ be a function of x and define the following operators that take functions to functions:

$$
\begin{gathered}
I f(x)=f(x) \\
E f(x)=f(x+1)=(I+\Delta) f(x) \\
\Delta f(x)=f(x+1)-f(x)=(E-I) f(x)
\end{gathered}
$$

For any operator $P, P^{n} f(x)$ is defined recursively by $P^{0} f(x)=f(x)$ and $\left.P^{k+1} f(x)=P\left(P^{k-1}\right) f(x)\right)$, for $k \geq 1$. Thus $E^{k} f(x)=f(x+k)$ and

$$
\Delta^{2} f(x)=\Delta f(x+1)-\Delta f(x)=f(x+2)-2 f(x+1)+f(x)=\left(E^{2}-2 E+I\right) f(x)=(E-I)^{2} f(x) .
$$

We have an operational calculus in which we can treat polynomials in I, E and Δ as satisfying the regular rules of algebra. In particular

$$
E^{n} f(x)=(I+\Delta)^{n} f(x)=\sum\binom{n}{k} \Delta^{k} f(x)
$$

and

$$
\Delta^{n} f(x)=(E-I)^{n} f(x)=\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} E^{k} f(x)=\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} f(x+k)
$$

for each positive integer n, facts than can be verified directly by unpacking the operational notation.
Now let $f(x)$ be a polynomial of degree $d \geq 0$. If $f(x)$ is constant $(d=0)$, then $\Delta f(x)=0$. If $d \geq 1$, then $\Delta f(x)$ is a polynomial of degree $d-1$. It follows that $\Delta^{d} f(x)$ is constant, and $\Delta^{n} f(x)=0$ whenever $n>d$. This yields the identity

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} f(x+k)=0
$$

for all x whenever $f(x)$ is a polynomial of degree strictly less than n.
Solution 1. [G. Zheng]

$$
\begin{aligned}
\sum_{k=0}^{n}\binom{n}{k} & x(x+k)^{k-1}(y-k)^{n-k}=\sum_{k=0}^{n}\binom{n}{k} x(x+k)^{k-1}[(x+y)-(x+k)]^{n-k} \\
& =\sum_{k=0}^{n} \sum_{j=0}^{n-k}\binom{n}{k} x(x+k)^{k-1}\binom{n-k}{j}(x+y)^{j}(-1)^{n-k-j}(x+k)^{n-k-j} \\
& =\sum_{0 \leq k \leq n-j \leq n}(-1)^{n-k-j}\binom{n}{k}\binom{n-k}{j} x(x+k)^{n-j-1}(x+y)^{j} \\
& =\sum_{j=0}^{n} \sum_{k=0}^{n-j}(-1)^{n-k-j}\binom{n}{j}\binom{n-j}{k} x(x+k)^{n-j-1}(x+y)^{j} \\
& =\sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j}(x+y)^{j} \sum_{k=0}^{n-j}(-1)^{k}\binom{n-j}{k} x(x+k)^{n-j-1} \\
& =(x+y)^{n} x(x+0)^{-1}+x \sum_{j=1}^{n-1}(-1)^{n-j}\binom{n}{j}(x+y)^{j} \sum_{k=0}^{n-j}(-1)^{k}\binom{n-j}{k}(x+k)^{n-j-1}
\end{aligned}
$$

Let $m=n-j$ so that $1 \leq m \leq n$. Then

$$
\begin{aligned}
\sum_{k=0}^{n-j}(-1)^{k}\binom{n-j}{k}(x+k)^{n-j-1} & =\sum_{k=0}^{m}(-1)^{k}\binom{m}{k}(x+k)^{m-1} \\
& =\sum_{k=0}^{m}(-1)^{k}\binom{m}{k} \sum_{l=0}^{m-1}\binom{m-1}{l} x^{m-l} k^{l} \\
& =\sum_{l=0}^{m-1}\binom{m-1}{l} x^{m-l} \sum_{k=0}^{m}(-1)^{k}\binom{m}{k} k^{l}=0
\end{aligned}
$$

The desired result now follows.
Solution 2. [M. Lipnowski] We prove that

$$
\sum_{k=0}^{n}\binom{n}{k} x(x-k z)^{k-1}(y+k z)^{n-k}=(x+y)^{n}
$$

by induction. When $n=1$, this becomes

$$
1 \cdot x(x)^{-1} y+1 \cdot x(x-z)^{0}(y+z)^{0}=y+x=x+y
$$

Assume that for $n \geq 2$,

$$
\sum_{k=0}^{n-1}\binom{n-1}{k} x(x-k z)^{k-1}(y+z k)^{n-k-1}=(x+y)^{n-1}
$$

Let $f(y)=(x+y)^{n}$ and $g(y)=\sum_{k=0}^{n}\binom{n}{k} x(x-k z)^{k-1}(y+k z)^{n-k}$. We can establish that $f(y)=g(y)$ for all y by showing that $f^{\prime}(y)=g^{\prime}(y)$ for all y (equality of the derivatives with respect to y) and $f(-x)=g(-x)$ (equality when y is replaced by $-x$).

That $f^{\prime}(y)=g^{\prime}(y)$ is a consequence of the induction hypothesis and the identity $\binom{n}{k}(n-k)=n\binom{n-1}{k}$. Also

$$
\begin{aligned}
g(-x) & =\sum_{k=0}^{n}\binom{n}{k} x(x-k z)^{k-1}(-x+k z)^{n-k} \\
& =x \sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k}(x-k z)^{n-1}=0
\end{aligned}
$$

by appealing to the finite differences result. The desired result now follows.

