
Solutions to December problems.

416. Let P be a point in the plane.

(a) Prove that there are three points A,B,C for which AB = BC, 6 ABC = 90◦, |PA| = 1, |PB| = 2
and |PC| = 3.

(b) Determine |AB| for the configuration in (a).

(c) A rotation of 90◦ about B takes C to A and P to Q. Determine 6 APQ.

Solution 1. (a) We first show that a figure similar to the desired figure is possible and then get the
lengths correct by a dilatation. Place a triangle in the cartesian plane with A at (0, 1), B at (0, 0) and C at
(1, 0). Let P be at (x, y). The condition that PA : PB = 1 : 2 yields that

x2 + y2 = 4[x2 + (y − 1)2] ⇐⇒ 0 = 3x2 + 3y2 − 8y + 4 .

The condition that PB : PC = 2 : 3 yields that

9[x2 + y2] = 4[(x− 1)2 + y2] ⇐⇒ 0 = 5x2 + 5y2 + 8x− 4 .

Hence 3x + 5y = 4, so that 9x2 = 16− 40y + 25y2 and

0 = 2(17y2 − 32y + 14) .

Solving these equations yields

(x, y) =
(

5
√

2− 4
17

,
16− 3

√
2

17

)
,

a point that lies within the positive quadrant, and

(x, y) =
(
−5
√

2− 4
17

,
16 + 3

√
2

17

)
,

a point that lies within the second quadrant..

(b) In the first situation,

|PB|2 =
20− 8

√
2

17
.

Rescaling the figure so that |PB| = 2, we find that the rescaled square has side length equal to the square
root of

(17)/(5− 2
√

2) = 5 + 2
√

2 .

In the second situation,

|PB|2 =
20 + 8

√
2

17
.

Rescaling the figure so that |PB| = 2, we find that the rescaled square has side length equal to the square
root of

(17)/(5 + 2
√

2) = 5− 2
√

2 .

(c) Since triangle BPQ is right isosceles, |PQ| = 2
√

2. Since also |AQ| = |CP | = 3 and |AP | = 1,
6 APQ = 90◦, by the converse of Pythagoras’ theorem.

Comment. Ad (a), P is on the intersection of two Apollonius circles with diameter joining (−2, 0) and
(2/5, 0) passing through the points (0, 2/

√
5) on the y−axis and with diameter joining (0, 2) and (0, 2/3).

These intersect within the triangle and outside of the triangle.
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Solution 2. Suppose that the square has side length x. Let the perpendiculat distance from P to AB
be a and from P to BC be b, both distances measured within the right angle. Then we have the three
equations: (1) a2 + b2 = 4; (2) a2 + (x − b)2 = 1 or x2 = 2bx − 3; (3) b2 + (x − a)2 = 9 or x2 = 2ax + 5.
Hence 2x(b− a) = 8, so that x = 4(b− a)−1. Also 4x = x2(b− a) = 5b + 3a, which along with b− a = 4/x
yields

2a = x− 5
x

and 2b =
3
x

+ x .

Thus

16 =
(

x− 5
x

)2

+
(

3
x

+ x

)2

= 2x2 +
34
x2
− 4

=⇒ x4 − 10x2 + 17 = 0

=⇒ x2 = 5± 2
√

2 .

For 2a to be positive, we require that x2 > 5 and so x =
√

5 + 2
√

2 and P is inside triangle ABC. Since

(5− 2
√

2)2 <

(
5− 2× 7

5

)2

=
(

11
5

)2

< 5 ,

the second value of x yields negative a and the point lies on the opposite side of AB to C.

For (c), we consider two cases:

(1) |AB| =
√

5 + 2
√

2 and P lies inside the triangle ABC. Applying the law of cosines to triangle APB
yields cos 6 APB = −1/

√
2 and 6 APB = 135◦. Hence 6 APQ = 6 APB − 6 QPB = 135◦ − 45◦ = 90◦.

(2) |AB| =
√

5− 2
√

2 and P lies outside the triangle ABC. Then the law of cosines applied to triangle
APB yields cos 6 APB = 1/

√
2 and 6 APB = 45◦. Hence 6 APQ = 6 APB + 6 BPQ = 45◦ + 45◦ = 90◦.

Solution 3. [D. Dziabenko] We can juxtapose two right triangles of sides (2, 2, 2
√

2) and (1, 2
√

2, 3) to
obtain a quadrilateral with |XY | = |XW | = 2, |Y Z| = 1, |ZW | = 3 and |Y W | = 2

√
2. Since 6 XY Z = 135◦,

we can use the law of cosines to find that |XZ| =
√

5 + 2
√

2.

A rotation of 90◦ about X takes W to Y and Z to T , so that |Y Z| = 1, |XY | = 2, |Y T | = |WZ| = 3 and
|XZ| = |XT | =

√
5 + 2

√
2. Relabel Y as P , X as B, Z as A and T as C to get the desired configuration.

For (b), we have that |AB| = |XZ| =
√

5 + 2
√

2, and, for (c), that Q = W and 6 APQ = 6 XY W = 90◦.

Solution 4. [J. Kileel] Let P ∼ (0, 0), B ∼ (0, 2), A ∼ (a, b), C ∼ (c, d). The conditions to be satisfied
are: (1) a2 + b2 = 1; (2) c2 + d2 = 9; (3) a2 + (b− 2)2 = c2 + (d− 2)2 =⇒ d = b + 2;

(4)
b− 2

a
=

c

2− d
=

c

−b
=⇒ −b2 + 2b = ac =⇒ b4 − 4b3 + 4b2 = (1− b2)(5− b2 − 4b) .

Hence
0 = 8b3 − 10b2 − 4b + 5 = (4b− 5)(2b2 − 1) .

Since b = −5/4 is extraneous (why?), either b = 1/
√

2 or b = −1
√

2.

Lat b = 1/
√

2. From symmetry, it suffices to take a = 1/
√

2 and we get

(a, b, c, d) =
(

1√
2
,

1√
2
,
2
√

2− 1√
2

,
2
√

2 + 1√
2

)
,

and
|AB|2 = |BC|2 = 5− 2

√
2 .
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Lat b = −1/
√

2. Again we take a = 1/
√

2 and we get

(a, b, c, d) =
(

1√
2
,
−1√

2
,
−2
√

2− 1√
2

,
2
√

2− 1√
2

)
,

and
|AB|2 = |BC|2 = 5 + 2

√
2 .

Thus the configuration is possible and we have the length of |AB|. In the first case, the rotation about B
that takes C to A is clockwise and carries P to Q ∼ (−2, 2). It is straightforward to check that 6 APQ = 90◦.
In the second case, the rotation about B that takes C to A is counterclockwise and carries P to Q ∼ (2, 2).
Again, 6 APQ = 90◦.

Solution 5. Place B at (0, 0), A at (0, a), C at (a, 0) and P at (b, c). Then we have to satisfy the three
equations: (1) (a− c)2 + b2 = 1; (2)b2 + c2 = 4; (3) (b− a)2 + c2 = 9. Taking the differences of the first two
and of the last two lead to the equations

2c = a +
3
a

2b = a− 5
a

from which, through substitution in (2), we get that a4 − 10a2 + 17 = 0. This leads to the possibilities that
a2 = 5± 2

√
2, and we can complete the argument as in the foregoing solutions.

417. Show that for each positive integer n, at least one of the five numbers 17n, 17n+1, 17n+2, 17n+3, 17n+4

begins with 1 (at the left) when written to base 10.

Solution 1. It is equivalent to show that, for each natural number n, one of 1.7n+k (0 ≤ k ≤ 4) begins
with the digit 1. We begin with this observation: if for some positive integers u and r, 1.7u < 10r ≤ 1.7u+1,
then

1.7u+1 = (1.7)(1.7)u < (1.7)10r < 2 · 10r

and the first digit of 1.7u+1 is 1.

We obtain the desired result by induction. 1.71 = 1.7 begins with 1, so one of the first five powers
of 1.7 begins with 1. Suppose that for some positive integer n exceeding 4, one, at least, of every five
consecutive powers of 1.7 up to 1.7n begins with 1. Let m ≤ n be the largest positive integer for which
10v < 1.7m < 2 · 10v for some integer v. Then 1.7m < 10v+1 and

1.7m+5 = (1.7)m(1.7)5 = (1.7)m(14.19857) > 10v+1

with the result that, for u equal to one of the numbers m, m+1, m+2, m+3, m+4, 1.7u < 10v+1 ≤ 1.7u+1.
Hence, one of the numbers 1.7m+k (1 ≤ k ≤ 5) begins with the digit 1. If it is 1.7m+k, then m + k > n and
we have established the result up to m + k.

Solution 2. For n = 1, 17n begins with 1. Suppose that, for some positive integer k, 17k begins with 1.
Then, either

10a < 17k <
105

174
10a

or
105

174
10a < 17k < 2× 10a

for some positive integer a. In the former case,

10a+5 < 175 × 10a < 17k+5 < 17× 10a+5

so that 17k+5 begins with 1. In the latter case,

10a+5 < 17k+4 < 2× 10a × 174 < 2× 10a × 3002 = 1.8× 10a+5
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so that 17k+4 begins with 1. The result follows.

Solution 3. Let 17n = a · 10m + b where 0 ≤ b < 10m. Then

a× 10m < 17n < (a + 1)10m

so that
(1.7a)10m+1 < 17n+1 < (1.7)(a + 1)10m+1 .

Let 6 ≤ a ≤ 9. Then

10m+2 < (1.7)6× 10m+1 < 17n+1 < 1.7× 10m+2

and 17n+1 begins with 1. Let 4 ≤ a ≤ 5. Then

6× 10m+1 < 4(17)10m ≤ (17a)10m < 17n+1 < (1.7)6× 10m+1 < (1.02)10m+1

so that, either 17n+1 begins with 1, or 17n+1 begins with 6, 7, 8 or 9 and 17n+2 begins with 1. When
a = 3, 5 × 10m+1 < 17n+1 < 7 × 10m+1 and either 17n+2 or 17n+3 begins with 1. When a = 2, then
3 × 10m+1 < 17n+1 < 6 × 10m+1 and one of 17n+2, 17n+3, 17n+4 begins with 1. Finally, if a = 1, one
can similarly show that one of 17n+k (1 ≤ k ≤ 5) begins with 1. The argument now can be completed by
induction.

Solution 4. [D. Dziabenko] 17n beginning with 1 is equivalent to 10m < 17n < 2×10m for some positive
integer m, which in turn is equivalent to

m < n log 17 < m + log 2

or
p < n log 1.7 < p + log 2

for some positive integer p(= m− n).

Suppose that 17n begins with 1. We observe that log 1.7 < log 2 = (1/3) log 8 < 1/3 and that 210 > 103,
whereupon log 2 > 3/10 and

log 1.7 = (log 17)− 1 > (log 16)− 1 = (4 log 2)− 1 >
6
5
− 1 =

1
5

=⇒ 1 < 5 log 1.7 < 5 log 2 < 5/3

and so the integer part of (n + 5) log 17 is exactly one more than the integer part of n log 17.

From the foregoing, each interval of length log 2 must contain a multiple of log 1.7 and in particular the
interval

{x : p + 1 < x < p + 1 + log 2}

must contain at least one of (n + k) ≤ 1.7 (1 ≤ k ≤ 5). We can now complete the argument for the result by
induction.

418. (a) Show that, for each pair m,n of positive integers, the minimum of m1/n and n1/m does not exceed
31/2.

(b) Show that, for each positive integer n,(
1 +

1√
n

)2

≥ n1/n ≥ 1 .
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(c) Determine an integer N for which
n1/n ≤ 1.00002005

whenever n ≥ N . Justify your answer.

Solution. (a) Wolog, we may assume that m ≤ n, so that m1/n ≤ n1/n. It suffices to show that,
for each positive integer n, n1/n ≤ 31/3(< 31/2) or that n ≤ 3n/3. Since 3 > 64/27, it follows that
31/3 − 1 > (4/3)− 1 = 1/3 > 0 and the result holds for n = 1. Suppose as an induction hypothesis, that it
holds for n. Then, since 3n/3 ≥ n,

3(n+1)/3 ≥ (3 + n− 3)31/3 > 34/3 + n− 3

= n + 3(31/3 − 1) > n + 1 .

(b) Note that (
1 +

1√
n

)n

≥ 1 + n

(
1√
n

)
= 1 +

√
n >

√
n .

Alternatively, we can note that, by taking a term out of the binomial expansion,

(
√

n + 1)2n >

(
2n

2

)
(
√

n)2n−2 =
2n(2n− 1)

2
nn−1

= (2n− 1)nn ≥ nn+1 ,

from which (
1 +

1√
n

)2n

=
(
√

n + 1)2n

nn
> n .

(c) By (b), it suffices to make sure that (1 + n−1/2)2 ≤ 1.00002005. Let N = 1010. Then, for n ≥ N ,
we have that

√
n ≥ 105, so that

(1 + n−1/2)2 ≤ (1.00001)2 = 1.0000200001 < 1.00002005 .

419. Solve the system of equations

x +
1
y

= y +
1
z

= z +
1
x

= t

for x, y, z not all equal. Determine xyz.

Solution 1. Taking pairs of the three equations, we obtain that

x− y =
y − z

yz
, y − z =

x− z

xz
, z − x =

x− y

xy
.

Since equality of any two of x, y, z implies equality of all three, x, y, z must be distinct. Multiplying these
three equations together we find that (xyz)2 = 1.

When xyz = 1, then z = 1/xy and we find that solutions are given by

(x, y, z) =
(

x,− 1
x + 1

,−x + 1
x

)
as long as x 6= 0,−1. When xyz = −1, then we obtain the solutions

(x, y, z) =
(

x,
1

1− x
,
x− 1

x

)
.
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Thus, xyz = 1 or xyz = −1.

Solution 2. We have that xy + 1 = yt and yz + 1 = zt, so that xyz + z = yzt = zt2 − t, whence
z(t2 − 1) = xyz + t. Similarly, y(t2 − 1) = x(t2 − 1) = xyz + t. If x 6= y, since (x − y)(t2 − 1) = 0,
we must have that t = ±1. We find that (x, y, z, t) = ((1 − z)−1, z−1(z − 1), z, 1) and xyz = −1 or
(x, y, z, t) = (−(z + 1)−1,−z−1(z + 1), z,−1) and xyz = 1. Thus xyz is equal to 1 or −1.

Solution 3. We have that y = 1/(t− x) and z = t− (1/x) = (xt− 1)/x. This leads to

1
t− x

+
x

xt− 1
= t =⇒ 0 = xt3 − (1 + x2)t2 − xt + (1 + x2) = (t2 − 1)[xt− (1 + x2)] = 0 .

Similarly,
0 = (t2 − 1)[yt− (1 + y2)] = (t2 − 1)[zt− (1 + z2)] .

Either t2 = 1 or x, y, z are the roots of the quadratic equation λ2− tλ+1 = 0. Since a quadratic has at most
two roots, two of x and y must be equal, say x = y. But then y = z contrary to hypothesis. Hence t2 = 1.

Multiplying the three equations together yields that

t3 = xyz + 3t +
1

xyz

from which
0 = (xyz)2 + (3t− t3)(xyz) + 1 = (xyz)2 + (3t− t)(xyz) + t2 = (xyz + t)2 .

Hence xyz = t. As in the previous solutions, we check that t = 1 and t = −1 are both possible.

420. Two circle intersect at A and B. Let P be a point on one of the circles. Suppose that PA meets the
second circle again at C and PB meets the second circle again at D. For what position of P is the
length of the segment CD maximum?

Solution 1. The segment CD always has the same length. The strategy is to show that the angle
subtended by CD on its circle is equal to the sum of the angles subtended by AB on the two circles, and so
is constant. There re a number of configurations possible. Note that (i) and (ii) do not occur with the same
pair of circle. The strategy is to show that the angle subtended by CD on its circle is equal to the sum or
difference of the angles subtended by AB on its two circles, and so CD is constant.

(i) A is between P and C; B is between P and D;

(ii) C is between P and A; D is between P and B;

(iii) A is between P and C; D is between P and B;

(iv) C is between P and A; B is between P and D;

(v) P is between A and C and also between B and D.

Ad (i), 6 CBD = 6 PCB + 6 BPC = 6 ACB + 6 APB. Ad (ii), 6 CBD = 6 ACB − 6 APB. Ad (iii),
by the angle sum of a triangle, 6 CAD = 180◦ − 6 CBD = 6 BCA + 6 BPA. Since ADBC is concyclic,
6 CBD = 6 PAD = 180◦ − 6 APD − 6 ADP = 6 ADB − 6 APB. Case (iv) is similar to (iii). Ad (v),
6 DBC = 6 DPC − 6 PCB = 6 APB− 6 ACB. The angle subtended by CD on the arc opposite P is 180◦−
6 DBC = 6 ACB + (180◦ − 6 APB). Also, 6 DBC = 6 APB − 6 ADB = (180◦ − 6 ADB)− (180◦ − 6 APB).

Solution 2. We have the same set of cases as in the first solution. Let U be the centre of the circle
PAB and V the centre of the circle ABDC. Let UV and AB intersect in O; note that UV ⊥ AB. It is
straightforward to show that triangles PAB and PDC are similar, whence CD : AB = PC : PB and that
triangles PBC and UBV are similar, whence PC : PB = UV : UB. Therefore, CD : AB = UV : UB and
the results follows.
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421. Let ABCD be a tetrahedron. Prove that

|AB| · |CD|+ |AC| · |BD| ≥ |AD| · |BC| .

Solution 1. First, we establish a small proposition. Let u and v be any unit vectors in space and p and
q any scalars. Then

|pu + qv| = |pv + qu| .

This is intuitively obvious, but can be formally established as follows:

|pu + qv|2 = (pu + qv) · (pu + qv) = p2 + q2 + 2pqu · v
= (pv + qu) · (pv + qu) = |pv + qu|2 .

Let u, v, w be unit vectors and b, c, d be positive scalars for which −−→AB = bu, −→AC = cv and −−→AD = dw.
Thus −−→BC = cv − bu, −−→CD = dw − cv and −−→BD = dw − bu.

Then
|AB||CD|+ |AC||BD| = b|dw − cv|+ c|dw − bu|

= b|dv − cw|+ c|bw − du| = |bdv − bcw|+ |cbw − cdu|
≥ |bdv − cdu| = d|bv − cu| = d|cv − bu| = |AD||BC| ,

as required.

Solution 2. Consider the planes of ABC and DBC as being hinged along BC. If we flatten the
tetrahedron by spreading the planes apart to a dihedral angle of 180◦, then D moves to a position D′

relative to A and |AD′| ≥ |AD|. The other distances between pairs of points remain the same. It is, thus,
enough to establish the result when A,B, C, D are coplanar. Suppose this to be the case.

Let a, b, c, d be complex numbers representing respectively the four points A,B,C, D. Then

|AB||CD|+ |AC||BD| = |(a− b)(c− d)|+ |(c− a)(b− d)|
≥ |(a− b)(c− d) + (c− a)(b− d)| = |(a− d)(c− b)| = |AD||BC| .

(The result in the plane is known as Ptolemy’s Inequality.)

Solution 3. [Q. Ho Phu] On the ray AC determine C ′ so that |AC||AC ′| = |AB|2; on the ray AD
determine D′ so that |AD||AD′| = |AB|2. Since AB : AC = AC ′ : AB and angle A is common, triangles
ABC and AC ′B are similar, whence BC ′ : BC = AB : AC and

|BC ′| = |BC||AB|
|AC|

=
|BC||AD||AB|
|AC||AD|

.

Similarly,

|BD′| = |BD||AB|
|AD|

=
|BD||AC||AB|
|AD||AC|

,

and

|C ′D′| = |CD||AD′|
|AC|

=
|CD||AB|2

|AD||AC|
.

In the triangle BC ′D′, we have that |BD′|+ |C ′D′| > |BC ′|, whence

|BD||AC|+ |CD||AB| > |AD||BC|

as desired.
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422. Determine the smallest two positive integers n for which the numbers in the set {1, 2, · · · , 3n − 1, 3n}
can be partitioned into n disjoint triples {x, y, z} for which x + y = 3z.

Solution. Suppose that the partition consists of the triples [xk, yk, zk] (1 ≤ k ≤ n). Then

3n∑
i=1

i =
n∑

k=1

(xk + yk + zk) = 4
n∑

k=1

zk

so that 4 must divide 1
23n(3n + 1), or that 3n(3n + 1) is a multiple of 8. Thus, either n ≡ 0 or n ≡ 5 (mod

8).

n = 5 is possible. Here are some examples:

[1, 11, 4], [2, 13, 5], [3, 15, 6], [9, 12, 7], [10, 14, 8]

[1, 14, 5], [2, 10, 4], [3, 15, 6], [9, 12, 7], [11, 13, 8]

[1, 8, 3], [2, 13, 5], [12, 15, 9], [4, 14, 6], [10, 11, 7]

[1, 11, 4], [2, 7, 3], [5, 13, 6], [10, 14, 8], [12, 15, 9]

[1, 8, 3], [2, 13, 5], [4, 14, 6], [10, 11, 7], [12, 15, 9]

Adjoining to any of these solutions the eight triples

[19, 29, 16], [21, 30, 17], [26, 28, 18], [27, 33, 20], [31, 35, 22], [32, 37, 23], [34, 38, 24], [36, 39, 25]

yields a possibility for n = 13.

For n = 8, we have

[1, 5, 2], [3, 9, 4], [6, 18, 8], [7, 23, 10], [14, 19, 11], [16, 20, 12], [17, 22, 13], [21, 24, 15]

There are many other possibilities.
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