
Solutions to the January problems.

353. The two shortest sides of a right-angled triangle, a and b, satisfy the inequality:√
a2 − 6a

√
2 + 19 +

√
b2 − 4b

√
3 + 16 ≤ 3 .

Find the perimeter of this triangle.

Solution. The equation can be rewritten as√
(a− 3

√
2)2 + 1 +

√
(b− 2

√
3)2 + 4 ≤ 3 .

Since the left side is at least equal to 1 + 2 = 3, we must have equality and so a = 3
√

2 and b = 2
√

3. The
hypotenuse of the triangle equal to

√
a2 + b2 =

√
30, and so the perimeter is equal to 3

√
2 + 2

√
3 +

√
30. ♠

354. Let ABC be an isosceles triangle with AC = BC for which |AB| = 4
√

2 and the length of the median
to one of the other two sides is 5. Calculate the area of this triangle.

Solution. Let M be the midpoint of BC, θ = 6 AMB and x = |BM | = |MC|. Then |AC| = 2x. By the
Law of Cosines, 4x2 = x2 + 25 + 10x cos θ and 32 = x2 + 25− 10x cos θ. Adding these two equations yields
that x2 = 9, so that x = 3. The height of the triangle from C is

√
4x2 − 8 =

√
28 = 2

√
7. Hence the area of

the triangle is 4
√

14. ♠

355. (a) Find all natural numbers k for which 3k − 1 is a multiple of 13.

(b) Prove that for any natural number k, 3k + 1 is not a multiple of 13.

Solution 1. Let k = 3q + r. Since 33 ≡ 1 (mod 13), 3k − 1 ≡ 3r − 1 (mod 13) and 3k + 1 ≡ 3r + 1 (mod
13). Since 30 = 1, 32 = 9, we see that only 3k − 1 is a multiple of 13 when k is a multiple of 3. ♠

Solution 2. Let p be a prime and N = d0 + d1p + · · ·+ drp
r = (drdr−1 · · · d1d0)p be an integer written

to base p. Then pk = (100 · · · 00)p, pk + 1 = (1000 · · · 01)p and pk − 1 = (p− 1, p− 1, · · · p− 1)p where the
first two have k + 1 digits and the last has k digits. Let p = 3, we see that 3k − 1 = (222 · · · 22)3 and
3k +1 = (100 · · · 01)3. Since 13 = (111)3, we see that 3k +1 is never a multiple of 13 and 3k− 1 is a multiple
of 13 if and only if k is a multiple of 3. ♠

356. Let a and b be real parameters. One of the roots of the equation x12 − abx + a2 = 0 is greater than 2.
Prove that |b| > 64.

Solution 1. Clearly, a 6= 0. The equation can be rewritten b = (x12 + a2)/(ax). If x > 2, then

|b| = x12 + a2

|a|x
≥ 2|a|x6

|a|x
= 2x5 > 64 ,

by the arithmetic-geometric means inequality. ♠

Solution 2. [V. Krakovna] The equation can be rewritten

x12 +
(

bx

2
− a

)2

=
b2x2

4
,

whence b2x2 = 4x12 + (bx− 2a)2 ≥ 4x12 and b2 ≥ 4x10. If |x| > 2, then b2 ≥ 212 and so |b| ≥ 26. ♠

357. Consider the circumference of a circle as a set of points. Let each of these points be coloured red or
blue. Prove that, regardless of the choice of colouring, it is always possible to inscribe in this circle an
isosceles triangle whose three vertices are of the same colour.
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Solution 1. Consider any regular pentagon inscribed in the given circle. Since there are five vertices and
only two options for their colours. the must be three vertices of the same colour. If they are adjacent, then
two of the sides of the triangle they determine are sides of the pentagon, and so equal. If two are adjacent
and the third opposite to the side formed by the first two, then once again they determine an isosceles
triangle. As this covers all the possibilities, the result follows.

Solution 2. If at most finitely many points on the circumference are red, then it is possible to find
an isosceles triangle with green vertices. (Why?) Suppose that there are infinitely many red points. Then
there are two red points, P and Q, that are neither at the end of a diagonal nor two vertices of an inscribed
equilateral triangle. Let U , V , W be three distinct points on the circumference of the circle unequal to P
and Q for which |UP | = |PQ| = |QV | and |PW | = |QW |. Then the triangles PQU , PQV , PQW and UV W
are isoceles. Either one of the first three has red vertices, or the last one has green vertices. ♠

Rider. Can one always find both a red and a green isosceles triangle if there are infinitely many points
of each colour?

358. Find all integers x which satisfy the equation

cos
(

π

8
(3x−

√
9x2 + 160x + 800)

)
= 1 .

Solution. We must have that

π

8
(3x−

√
9x2 + 160x + 800) = 2kπ

for some integer k, whence
3x−

√
9x2 + 160x + 800 = 16k .

Multiplying by the surd conjugate of the left side yields

−160x− 800 = 16k(3x +
√

9x2 + 160x + 800)

so that

3x +
√

9x2 + 160x + 800 =
1
k

(−10x− 50) .

Therefore, 6x = 16k − (1/k)(10x + 50), whereupon (3k + 5)x = 8k2 − 25. Multiplying by 9 yields that

9x(3k + 5) = 8(9k2 − 25)− 25 = 8(3k − 5)(3k + 5)− 25 ,

whereupon 3k + 5 is a divisor of 25, i.e., one of the six numbers ±1,±5,±25. This leads to the three
possibilities (k, x) = (−2,−7), (0,−5), (−10,−31). The solution x = −5 is extraneous, so the given equation
has only two integers solutions, x = −31,−7. ♠

359. Let ABC be an acute triangle with angle bisectors AA1 and BB1, with A1 and B1 on BC and AC,
respectively. Let J be the intersection of AA1 and BB1 (the incentre), H be the orthocentre and O the
circumcentre of the triangle ABC. The line OH intersects AC at P and BC at Q. Given that C, A1,
J and B1 are vertices of a concyclic quadrilateral, prove that PQ = AP + BQ.

Solution. [Y. Zhao] Since CA1JB1 is concyclic, we have that

6 C = 180◦ − 6 AJB = 6 JAB + 6 JBA =
1
2
6 A +

1
2
6 B = 90◦ − 1

2
6 C
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so that 6 C = 60◦. (Here we used the fact that the sum of opposite angles of a concyclic quadrilateral is 180◦

and the sum-of-interior-angles theorem for triangle AJB.) Now, applying the same reasoning to 6 AHB and
using the fact that H is the orthocentre of triangle ABC, we find that

6 AHB = 180◦ − 6 HAB − 6 HBA == 180◦ − 6 HAB − 6 HCA

= 180◦ − (90◦ − 6 ABC)− (90◦ − 6 BAC)
= 6 ABC + 6 BAC = 180◦ − 6 ACB = 120◦ .

On the other hand, since O is the circumcentre of triangle ABC, 6 AOB = 2 6 ACB = 120◦. Therefore,
AOHB is concyclic. Now, 6 PHA + 6 AHO = 180◦ (supplementary angles) and 6 OBA + 6 AHO = 180◦

(opposite angles of concyclic quadrilateral), so that 6 PHA = 6 OBA. Next, in triangle AOB with AO = OB,

6 OBA =
1
2
(180◦ − 6 AOB) = 90◦ − 1

2
6 AOB = 90◦ − 6 C = 6 PAH .

So, 6 PHA = 6 PAH; thus, triangle APH is isosceles and AP = PH. Similarly, QB = QH. Therefore
PQ = PH + QH = AP + BQ as desired. ♠
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