
Solutions to October problems

409. Find the number of ways of dealing n cards to two persons (n ≥ 2), where the persons may receive
unequal (positive) numbers of cards. Disregard the order in which the cards are received.

Solution. If we allow hands with no cards, there are 2n ways in which they may be dealt (each card
may go to one of two people). There are two cases in which a person gets no cards. Subtracting these gives
the result: 2n − 2.

410. Prove that log n ≥ k log 2, where n is a natural number and k the number of distinct primes that divide
n.

Solution. Let n be a natural number greater than 1 and pa1
1 pa2

2 · · · pak

k its prime factorization. Since
pi ≥ 2 and ai ≥ 1 for all i,

n ≥ 2a1+a2+···+ak ≥ 2k .

This is also true for n = 1, for in this case, k = 0 and n = 20. Thus, for any base b exceeding 1,

logb n ≥ logb 2k = k logb 2 .

411. Let b be a positive integer. How many integers are there, each of which, when expressed to base b, is
equal to the sum of the squares of its digits?

Solution. A simple calculation shows that 0 and 1 are the only single-digit solutions. We show that
there are no solutions with three or more digits. Suppose that n = a0 + a1b + · · · + ambm where m ≥ 2,
1 ≤ am ≤ b− 1 and 0 ≤ ai ≤ b− 1 for 0 ≤ i ≤ m− 1. Then

(a0 + a1b + · · ·+ ambm)− (a2
0 + a2

1 + · · ·+ am)2

= a1(b− a1) + a2(b2 − a2) + · · ·+ am(bk − am)− a0(a0 − 1)

≥ am(bm − am)− a0(a0 − 1) ≥ 1 · (b2 − (b− 1))− (b− 1)(b− 2)
= 2b− 1 ≥ 0 .

Thus, there are at most two digits for any example.

Let N(b) denote the total number of solutions, and N2(b) the number of two digit solutions. Thus,
N(n) = N2(b) + 2.

Thus, N2(n) is the number of pairs (a0, a1) satisfying

a0 + a1b = a2
0 + a2

1 , 0 ≤ a0 < b, 1 ≤ a1 < b . (1)

The transformation given by 2a0 = p+1, 2a1 = b+q establishes a one-one correspondence between the pairs
(a0, a1) satisfying (1) and the pairs (p, q) satisfying

p2 + q2 = 1 + b2 , p odd , 3 ≤ p ≤ b, 1 ≤ q ≤ b . (3)

Now we can express the number of solutions of (2) in terms of the number r(k) of solutions to

c2 + d2 = k . (3)

Suppose that b is even. Then 1 + b2 is odd, so that exactly one of p or q is odd. Thus, given a solution
(p, q) to (2) we can generate three others that solve (3) via (c, d) = (−p, q), (q, p), (q − p). We also add the
eight remaining solutions (±1,±b) and (±b,±1). This shows that r(1 + b2) = 4N2(b) + 8 = 4N(b).
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Suppose that b is odd. Then 1 + b2 ≡ 2 (mod 4); hence, both p and q must be odd. Thus, from any
solution (p, q) to (2) we can generate another solution to (3) via (c, d) = (−p, q). We also add the remaining
four uncounted solutions, (±1,±b). This shows that r(1 + b2) = 2N2(b) + 4 = 2N(b).

The quantity r(k) can be computed from a formula given, for example, in the book Introduction to the
Theory of Numbers by Hardy and Wright. Using the fact that no prime of the form 4j + 3 can divide 1 + b2,
we find that

r(1 + b2) =
{

4τ(1 + b2) , if b is even,
2τ(1 + b2) , if b is odd,

where τ(n) is the number of positive integer divisors of n. Thus N(b) = τ(1 + b2).

412. Let A and B be the midpoints of the sides, EF and ED, of an equilateral triangle DEF . Extend AB to
meet the circumcircle of triangle DEF at C. Show that B divides AC according to the golden section.
(That is, show that BC : AB = AB : AC.)

Solution. Consider the chords ED and CC ′. The angles EBC ′ and CBD are equal, since they are
vertically opposite, while angles C ′ED and DCC ′ are equal since they are subtended by the same chord
C ′D. Thus triangles C ′EB and DCB are similar. Therefore EB : C ′B = BC : BD.

Since EB = BD = AB,

BC : AB = BC : BD = EC : C ′B = AB : AC .

413. Let I be the incentre of triangle ABC. Let A′, B′ and C ′ denote the intersections of AI, BI and CI,
respectively, with the incircle of triangle ABC. Continue the process by defining I ′ (the incentre of
triangle A′B′C ′), then A′′B′′C ′′, etc.. Prove that the angles of triangle A(n)B(n)C(n) get closer and
closer to π/3 as n increases.

Solution. From triangle IAC we have that 6 AIC = π − A
2 − C

2 = π+B
2 , so that B′ = 6 A′B′C ′ =

1
2
6 A′IC ′ = 1

2
6 AIC = π+B

4 . Similar relations hold for A′ and C ′. Assuming, wolog, A ≤ B ≤ C, then
A′ = 1

4 (π +A) ≤ B′ ≤ 1
4 (π +B) ≤ C ′ = 1

4 (π +C), and C ′−A′ = 1
4 (C −A), so that triangle A′B′C ′ is “four

times closer” to equilateral than triangle ABC is. The result follows.

414. Let f(n) be the greatest common divisor of the set of numbers of the form kn − k, where 2 ≤ k, for
n ≥ 2. Evaluate f(n). In particular, show that f(2n) = 2 for each integer n.

Solution. For any prime p, f(n) cannot contain a factor p2 because p2 6 |k(kn−1 − 1) for k = p. For any
n, 2|f(n).

If p is an odd prime and if a is a primitive root modulo p, then p|a(an−1− 1) only if (p− 1)|(n− 1). On
the other hand, if (p− 1)|(n− 1), then p|(kn − k) for every k. Thus, if Pn is the product of the distinct odd
primes p for which (p− 1)|(n− 1), then f(n) = 2Pn. (In particular, 6|f(n) for every odd n.)

As p− 1 is not a divisor of 2n− 1 for any odd prime p, it follows that f(n)− 2.

Comments. The symbol | means “divides” or “is a divisor of”. For every prime p, there is a number a
(called the primitive root modulo p such that p− 1 is the smallest values of k for which ak ≡ 1 modulo p.

415. Prove that
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Solution. The identity

cos 7θ = (cos θ + 1)(8 cos3 θ − 4 cos2 θ − 4 cos θ + 1)2 − 1
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(derive this using de Moivre’s theorem, or otherwise) implies that the three roots of f(x) = 8x3−4x2−4x+1
are cos π

7 , cos 3π
7 and cos 5π

7 . Observe that cos π
7 > cos 3π

7 > 0 > cos 5π
7 . Thus, cos π

7 is the only root of the
cubic polynomial f(x) greater than cos 3π

7 .
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The function g(x) = cos( 1
3 arccos x) is increasing for −1 ≤ x ≤ 1, so that a > cos( 1

3 arccos(−1)) = 1
2 .

Therefore

x >
1 +

√
7

6
>

1
2

> cos
3π

7
.

Since 6c− 1 = 2
√

7a, the identity 4 cos3 θ − 3 cos θ = cos 3θ gives

1
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Hence
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and so c = cos π
7 .
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