Solutions for December

472. Find all integers z for which

(4—2)* "+ (5-2)" " +10=4" + 5.

Solution. If x < 0, then the left side is an integer, but the right side is positive and less than i + % <1.
If # > 5, then the left side is less than i, while the right side is a positive integer. Therefore, the only
candidates for solution are the integers between 0 and 5 inclusive. Checking, we find that the only solution

isx =2.

473. Let ABCD be a quadrilateral; let M and N be the respective midpoint of AB and BC; let P be the
point of interesection of AN and BD, and @ be the point of intersection of DM amd AC. Suppose the
3BP = BD and 3AQ = AC. Prove that ABCD is a parallelogram.

Solution. Let AB = X, BC = y and CD = ax + by, where a and b are real numbers. Then
AD = (a+Dx+ (b+ 1)y

and

1
m:x—kiy.

But BD = SB—f)’, so that
ﬁ:21ﬁ+ﬁ _a+3 b+l

3 3x+3y.

Since the vectors AP and AN are collinear,a +3:1=b+1: %, whence a —2b+ 1 = 0. Also

DM =AM — AD = (;—a—l)x—(b+1)y:—<a+;)X—(b—&-l)y

and
DO = A0 — AD = é(x+y)—(a+1)x—(b+ 1)y=—%[(3a+2)x—|—(3b—|—2)y] .

Since the vectors D@ and DM are collinear, we must have (Ba+2):(a+3)=(3b+2): (b+1), whence
2a + b+ 2 = 0. Therefore (a,b) = (—1,0), CD = —x = BA and AD = y = BC. Hence ABCD is a
parallelogram.

474. Solve the equation for positive real z:

(2log5:c 4 3)log5 2 _ r—23.

Solution. Recall the identity u'°8 v = v!°8 % for positive u, v and positive base b # 1. (Take logarithms
to base b.) Then, for all real ¢, (2! + 3)1°852 — 21085(2'+3)  This is true in particular when t = log; z.

Let f(x) = 2852 4 3 for x > 0. Then f(z) = 2!°¢52 + 3 and the equation to be solved is f(f(z)) = .
The function f(z) is an increasing function of the positive variable . If f(z) < z, then f(f(z)) < f(x); if
f(z) > =z, then f(f(z)) > f(z). Hence, for f(f(z)) = = to be true, we must have f(z) = z. With t = logg ,
the equation becomes 2! + 3 = 5!, or equivalently, (2/5)" + 3(1/5)" = 1. The left side is a stricly decreasing
function of ¢, and so equals the right side only when ¢ = 1. Hence the unique solution of the equation is
T =0.



475. Let 21, 29, 23, 24 be distinct complex numbers for which |z1| = |22] = |23] = |24]. Suppose that there is
a real number ¢ # 1 for which

[tz1 + 20 4+ 23 + 24| = |21 + t22 + 25 + 24| = |21 + 22 + t23 + 24] .
Show that, in the complex plane, z1, z2, 23, z4 lie at the vertices of a rectangle.
Solution. Let s = 21 + 22 + 23 + 24. Then
[s—(1—t)z1|=]s—(1—t)za| =|s— (1 —t)z3] .
Therefore, s is equidistant from the three distinct points (1 — ¢)z1, (1 — t)z9 and (1 — t)z3; but these three
points are on the circle with centre 0 and radius (1 — ¢)z;. Therefore s = 0.

Since 21 — (—22) =21+ 20 = —23 — 24 = (—24) — 23 and 29 — (—23) = 20+ 23 = —24 — 21 = (—24) — 21,
z1, —29, z3 and —z4 are the vertices of a parallelogram inscribed in a circle centered at 0, and hence of a
rectangle whose diagonals intersect at 0. Therefore, —z5 is the opposite of one of z1, z3 and —z4. Since 25 is
unequal to z; and z3, we must have that —zo = z4. Also z; = —z3. Hence z1, 29, 23 and z4 are the vertices
of a rectangle.

476. Let p be a positive real number and let |zg| < 2p. For n > 1, define

3
Ty = 3Tp—1 — Fxn_l .

Determine z,, as a function of n and xg.

Solution. Let x,, = 2pyy, for each nonnegative integer n. Then |yo| < 1 and y,, = 3y,—1 — 4y> _;. Recall
that

sin 30 = sin 26 cos 6 + sin  cos 20 = 2sin (1 — sin” §) + sin (1 — 2sin® @) = 3sinf — 4sin® 6 .
Select 0 € [—m/2,7/2]. Then, by induction, we determine that y, = sin3"6 and z, = 2psin 3"6, for each

nonnegative integer n, where 6 = arcsin(zo/2p).

477. Let S consist of all real numbers of the form a + b\/i, where a and b are integers. Find all functions
that map S into the set R of reals such that (1) f is increasing, and (2) f(z +y) = f(z) + f(y) for all
xz,y in S.

Solution. Since f(0) = £(0) + £(0), £(0) = 0 and f(z) > 0 for x > 0. Let f(1) = u and f(v/2) = v; u
and v are both nonnegative. Since f(0) = f(z) + f(—z), f(—x) = —f(x) for all x. Since, by induction, it
can be shown that f(nz) =nf(x) for every positive integer n, it follows that

fla+bv2) =au+bv,

for every pair (a,b) of integers.

Since f is increasing, for every positive integer n, we have that
f(Inv2]) < f(nv2) < f([nv2] + 1)

so that

[nV2)u < nv < (|nv2] + 1u .
Therefore,

<\/§— 1>u < <M>u <v< %(Ln\/ﬁj +1)u < <\/§+ i)u :

n n

2



for every positive integer n. It follows that v = uy/2, so that f(z) = ux for every z € S. It is readily checked
that this equation satisfies the conditions for all nonegative w.

478. Solve the equation

\/2+\/2+\/2+7$+\/§\/2\/2+\/2+7I2x

Solution. Since 2 — \/2+ 2+ x > 0, we must have 0 < z < 2. Therefore, there exists a number

t € [0, 3] for which cost = 2z. Now we have that,

\/2+\/2+\/2+x:\/2+\/2+v2+2605t

= \/2+ \/2+ VAacos?(t/2) = \/2—|— V2 4+ 2cos(t/2)
= /2 + 2cos(t/4) = 2cos(t/8) .

Similarly, \/2 — V2424 2 =2sin(t/8). Hence the equation becomes

forx >0

t t
2cos§ +2\/§Siﬂ§ =4cost

or

V3

L t+ in © ti
—cos—- + —sin- =cott.
2 8 2 8

Tl cost
(¢0)] 3 g = COST .

Since the argument of the cosine on the left side lies between 0 and 7/3, we must have that (7/3) — (¢/8) = t,
or t = 8m/27.

Thus,



