## Solutions for December

472. Find all integers $x$ for which

$$
(4-x)^{4-x}+(5-x)^{5-x}+10=4^{x}+5^{x} .
$$

Solution. If $x<0$, then the left side is an integer, but the right side is positive and less than $\frac{1}{4}+\frac{1}{5}<1$. If $x>5$, then the left side is less than $\frac{1}{4}$, while the right side is a positive integer. Therefore, the only candidates for solution are the integers between 0 and 5 inclusive. Checking, we find that the only solution is $x=2$.
473. Let $A B C D$ be a quadrilateral; let $M$ and $N$ be the respective midpoint of $A B$ and $B C$; let $P$ be the point of interesection of $A N$ and $B D$, and $Q$ be the point of intersection of $D M$ amd $A C$. Suppose the $3 B P=B D$ and $3 A Q=A C$. Prove that $A B C D$ is a parallelogram.

Solution. Let $\overrightarrow{A B}=\mathbf{x}, \overrightarrow{B C}=\mathbf{y}$ and $\overrightarrow{C D}=a \mathbf{x}+b \mathbf{y}$, where $a$ and $b$ are real numbers. Then

$$
\overrightarrow{A D}=(a+1) \mathbf{x}+(b+1) \mathbf{y}
$$

and

$$
\overrightarrow{A N}=\mathbf{x}+\frac{1}{2} \mathbf{y}
$$

But $\overrightarrow{B D}=3 \overrightarrow{B P}$, so that

$$
\overrightarrow{A P}=\frac{2 \overrightarrow{A B}+\overrightarrow{A D}}{3}=\frac{a+3}{3} \mathbf{x}+\frac{b+1}{3} \mathbf{y} .
$$

Since the vectors $\overrightarrow{A P}$ and $\overrightarrow{A N}$ are collinear, $a+3: 1=b+1: \frac{1}{2}$, whence $a-2 b+1=0$. Also

$$
\overrightarrow{D M}=\overrightarrow{A M}-\overrightarrow{A D}=\left(\frac{1}{2}-a-1\right) \mathbf{x}-(b+1) \mathbf{y}=-\left(a+\frac{1}{2}\right) \mathbf{x}-(b+1) \mathbf{y}
$$

and

$$
\overrightarrow{D Q}=\overrightarrow{A Q}-\overrightarrow{A D}=\frac{1}{3}(\mathbf{x}+\mathbf{y})-(a+1) \mathbf{x}-(b+1) \mathbf{y}=-\frac{1}{3}[(3 a+2) \mathbf{x}+(3 b+2) \mathbf{y}] .
$$

Since the vectors $\overrightarrow{D Q}$ and $\overrightarrow{D M}$ are collinear, we must have $(3 a+2):\left(a+\frac{1}{2}\right)=(3 b+2):(b+1)$, whence $2 a+b+2=0$. Therefore $(a, b)=(-1,0), \overrightarrow{C D}=-\mathbf{x}=\overrightarrow{B A}$ and $\overrightarrow{A D}=\mathbf{y}=\overrightarrow{B C}$. Hence $A B C D$ is a parallelogram.
474. Solve the equation for positive real $x$ :

$$
\left(2^{\log _{5} x}+3\right)^{\log _{5} 2}=x-3 .
$$

Solution. Recall the identity $u^{\log _{b} v}=v^{\log _{b} u}$ for positive $u, v$ and positive base $b \neq 1$. (Take logarithms to base b.) Then, for all real $t,\left(2^{t}+3\right)^{\log _{5} 2}=2^{\log _{5}\left(2^{t}+3\right)}$. This is true in particular when $t=\log _{5} x$.

Let $f(x)=2^{\log _{5} x}+3$ for $x>0$. Then $f(x)=x^{\log _{5} 2}+3$ and the equation to be solved is $f(f(x))=x$. The function $f(x)$ is an increasing function of the positive variable $x$. If $f(x)<x$, then $f(f(x))<f(x)$; if $f(x)>x$, then $f(f(x))>f(x)$. Hence, for $f(f(x))=x$ to be true, we must have $f(x)=x$. With $t=\log _{5} x$, the equation becomes $2^{t}+3=5^{t}$, or equivalently, $(2 / 5)^{t}+3(1 / 5)^{t}=1$. The left side is a stricly decreasing function of $t$, and so equals the right side only when $t=1$. Hence the unique solution of the equation is $x=5$.
475. Let $z_{1}, z_{2}, z_{3}, z_{4}$ be distinct complex numbers for which $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=\left|z_{4}\right|$. Suppose that there is a real number $t \neq 1$ for which

$$
\left|t z_{1}+z_{2}+z_{3}+z_{4}\right|=\left|z_{1}+t z_{2}+z_{3}+z_{4}\right|=\left|z_{1}+z_{2}+t z_{3}+z_{4}\right| .
$$

Show that, in the complex plane, $z_{1}, z_{2}, z_{3}, z_{4}$ lie at the vertices of a rectangle.
Solution. Let $s=z_{1}+z_{2}+z_{3}+z_{4}$. Then

$$
\left|s-(1-t) z_{1}\right|=\left|s-(1-t) z_{2}\right|=\left|s-(1-t) z_{3}\right| .
$$

Therefore, $s$ is equidistant from the three distinct points $(1-t) z_{1},(1-t) z_{2}$ and $(1-t) z_{3}$; but these three points are on the circle with centre 0 and radius $(1-t) z_{1}$. Therefore $s=0$.

Since $z_{1}-\left(-z_{2}\right)=z_{1}+z_{2}=-z_{3}-z_{4}=\left(-z_{4}\right)-z_{3}$ and $z_{2}-\left(-z_{3}\right)=z_{2}+z_{3}=-z_{4}-z_{1}=\left(-z_{4}\right)-z_{1}$, $z_{1},-z_{2}, z_{3}$ and $-z_{4}$ are the vertices of a parallelogram inscribed in a circle centered at 0 , and hence of a rectangle whose diagonals intersect at 0 . Therefore, $-z_{2}$ is the opposite of one of $z_{1}, z_{3}$ and $-z_{4}$. Since $z_{2}$ is unequal to $z_{1}$ and $z_{3}$, we must have that $-z_{2}=z_{4}$. Also $z_{1}=-z_{3}$. Hence $z_{1}, z_{2}, z_{3}$ and $z_{4}$ are the vertices of a rectangle.
476. Let $p$ be a positive real number and let $\left|x_{0}\right| \leq 2 p$. For $n \geq 1$, define

$$
x_{n}=3 x_{n-1}-\frac{1}{p^{2}} x_{n-1}^{3} .
$$

Determine $x_{n}$ as a function of $n$ and $x_{0}$.
Solution. Let $x_{n}=2 p y_{n}$ for each nonnegative integer $n$. Then $\left|y_{0}\right| \leq 1$ and $y_{n}=3 y_{n-1}-4 y_{n-1}^{3}$. Recall that

$$
\sin 3 \theta=\sin 2 \theta \cos \theta+\sin \theta \cos 2 \theta=2 \sin \theta\left(1-\sin ^{2} \theta\right)+\sin \theta\left(1-2 \sin ^{2} \theta\right)=3 \sin \theta-4 \sin ^{3} \theta
$$

Select $\theta \in[-\pi / 2, \pi / 2]$. Then, by induction, we determine that $y_{n}=\sin 3^{n} \theta$ and $x_{n}=2 p \sin 3^{n} \theta$, for each nonnegative integer $n$, where $\theta=\arcsin \left(x_{0} / 2 p\right)$.
477. Let $S$ consist of all real numbers of the form $a+b \sqrt{2}$, where $a$ and $b$ are integers. Find all functions that map $S$ into the set $\mathbf{R}$ of reals such that (1) $f$ is increasing, and (2) $f(x+y)=f(x)+f(y)$ for all $x, y$ in $S$.

Solution. Since $f(0)=f(0)+f(0), f(0)=0$ and $f(x) \geq 0$ for $x \geq 0$. Let $f(1)=u$ and $f(\sqrt{2})=v ; u$ and $v$ are both nonnegative. Since $f(0)=f(x)+f(-x), f(-x)=-f(x)$ for all $x$. Since, by induction, it can be shown that $f(n x)=n f(x)$ for every positive integer $n$, it follows that

$$
f(a+b \sqrt{2})=a u+b v
$$

for every pair $(a, b)$ of integers.
Since $f$ is increasing, for every positive integer $n$, we have that

$$
f(\lfloor n \sqrt{2}\rfloor) \leq f(n \sqrt{2}) \leq f(\lfloor n \sqrt{2}\rfloor+1),
$$

so that

$$
\lfloor n \sqrt{2}\rfloor u \leq n v \leq(\lfloor n \sqrt{2}\rfloor+1) u .
$$

Therefore,

$$
\left(\sqrt{2}-\frac{1}{n}\right) u \leq\left(\frac{\lfloor n \sqrt{2}\rfloor}{n}\right) u \leq v \leq \frac{1}{n}(\lfloor n \sqrt{2}\rfloor+1) u \leq\left(\sqrt{2}+\frac{1}{n}\right) u
$$

for every positive integer $n$. It follows that $v=u \sqrt{2}$, so that $f(x)=u x$ for every $x \in S$. It is readily checked that this equation satisfies the conditions for all nonegative $u$.
478. Solve the equation

$$
\sqrt{2+\sqrt{2+\sqrt{2+x}}}+\sqrt{3} \sqrt{2-\sqrt{2+\sqrt{2+x}}}=2 x
$$

for $x \geq 0$
Solution. Since $2-\sqrt{2+\sqrt{2+x}} \geq 0$, we must have $0 \leq x \leq 2$. Therefore, there exists a number $t \in\left[0, \frac{1}{2} \pi\right]$ for which $\cos t=\frac{1}{2} x$. Now we have that,

$$
\begin{aligned}
\sqrt{2+\sqrt{2+\sqrt{2+x}}} & =\sqrt{2+\sqrt{2+\sqrt{2+2 \cos t}}} \\
& =\sqrt{2+\sqrt{2+\sqrt{4 \cos ^{2}(t / 2)}}}=\sqrt{2+\sqrt{2+2 \cos (t / 2)}} \\
& =\sqrt{2+2 \cos (t / 4)}=2 \cos (t / 8) .
\end{aligned}
$$

Similarly, $\sqrt{2-\sqrt{2+\sqrt{2+x}}}=2 \sin (t / 8)$. Hence the equation becomes

$$
2 \cos \frac{t}{8}+2 \sqrt{3} \sin \frac{t}{8}=4 \cos t
$$

or

$$
\frac{1}{2} \cos \frac{t}{8}+\frac{\sqrt{3}}{2} \sin \frac{t}{8}=\cot t .
$$

Thus,

$$
\cos \left(\frac{\pi}{3}-\frac{t}{8}\right)=\cos t
$$

Since the argument of the cosine on the left side lies between 0 and $\pi / 3$, we must have that $(\pi / 3)-(t / 8)=t$, or $t=8 \pi / 27$.

