
Solutions for December

472. Find all integers x for which

(4− x)4−x + (5− x)5−x + 10 = 4x + 5x .

Solution. If x < 0, then the left side is an integer, but the right side is positive and less than 1
4 + 1

5 < 1.
If x > 5, then the left side is less than 1

4 , while the right side is a positive integer. Therefore, the only
candidates for solution are the integers between 0 and 5 inclusive. Checking, we find that the only solution
is x = 2.

473. Let ABCD be a quadrilateral; let M and N be the respective midpoint of AB and BC; let P be the
point of interesection of AN and BD, and Q be the point of intersection of DM amd AC. Suppose the
3BP = BD and 3AQ = AC. Prove that ABCD is a parallelogram.

Solution. Let −−→AB = x, −−→BC = y and −−→CD = ax + by, where a and b are real numbers. Then

−−→
AD = (a + 1)x + (b + 1)y

and
−−→
AN = x +

1
2
y .

But −−→BD = 3−−→BP , so that
−→
AP =

2−−→AB +−−→
AD

3
=

a + 3
3

x +
b + 1

3
y .

Since the vectors −→AP and −−→AN are collinear, a + 3 : 1 = b + 1 : 1
2 , whence a− 2b + 1 = 0. Also

−−→
DM = −−→

AM −−−→AD =
(

1
2
− a− 1

)
x− (b + 1)y = −

(
a +

1
2

)
x− (b + 1)y

and
−−→
DQ = −→

AQ−−−→AD =
1
3
(x + y)− (a + 1)x− (b + 1)y = −1

3
[(3a + 2)x + (3b + 2)y] .

Since the vectors −−→DQ and −−→
DM are collinear, we must have (3a + 2) : (a + 1

2 ) = (3b + 2) : (b + 1), whence
2a + b + 2 = 0. Therefore (a, b) = (−1, 0), −−→CD = −x = −−→

BA and −−→
AD = y = −−→

BC. Hence ABCD is a
parallelogram.

474. Solve the equation for positive real x:

(2log5 x + 3)log5 2 = x− 3 .

Solution. Recall the identity ulogb v = vlogb u for positive u, v and positive base b 6= 1. (Take logarithms
to base b.) Then, for all real t, (2t + 3)log5 2 = 2log5(2

t+3). This is true in particular when t = log5 x.

Let f(x) = 2log5 x + 3 for x > 0. Then f(x) = xlog5 2 + 3 and the equation to be solved is f(f(x)) = x.
The function f(x) is an increasing function of the positive variable x. If f(x) < x, then f(f(x)) < f(x); if
f(x) > x, then f(f(x)) > f(x). Hence, for f(f(x)) = x to be true, we must have f(x) = x. With t = log5 x,
the equation becomes 2t + 3 = 5t, or equivalently, (2/5)t + 3(1/5)t = 1. The left side is a stricly decreasing
function of t, and so equals the right side only when t = 1. Hence the unique solution of the equation is
x = 5.
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475. Let z1, z2, z3, z4 be distinct complex numbers for which |z1| = |z2| = |z3| = |z4|. Suppose that there is
a real number t 6= 1 for which

|tz1 + z2 + z3 + z4| = |z1 + tz2 + z3 + z4| = |z1 + z2 + tz3 + z4| .

Show that, in the complex plane, z1, z2, z3, z4 lie at the vertices of a rectangle.

Solution. Let s = z1 + z2 + z3 + z4. Then

|s− (1− t)z1| = |s− (1− t)z2| = |s− (1− t)z3| .

Therefore, s is equidistant from the three distinct points (1 − t)z1, (1 − t)z2 and (1 − t)z3; but these three
points are on the circle with centre 0 and radius (1− t)z1. Therefore s = 0.

Since z1 − (−z2) = z1 + z2 = −z3 − z4 = (−z4)− z3 and z2 − (−z3) = z2 + z3 = −z4 − z1 = (−z4)− z1,
z1, −z2, z3 and −z4 are the vertices of a parallelogram inscribed in a circle centered at 0, and hence of a
rectangle whose diagonals intersect at 0. Therefore, −z2 is the opposite of one of z1, z3 and −z4. Since z2 is
unequal to z1 and z3, we must have that −z2 = z4. Also z1 = −z3. Hence z1, z2, z3 and z4 are the vertices
of a rectangle.

476. Let p be a positive real number and let |x0| ≤ 2p. For n ≥ 1, define

xn = 3xn−1 −
1
p2

x3
n−1 .

Determine xn as a function of n and x0.

Solution. Let xn = 2pyn for each nonnegative integer n. Then |y0| ≤ 1 and yn = 3yn−1 − 4y3
n−1. Recall

that

sin 3θ = sin 2θ cos θ + sin θ cos 2θ = 2 sin θ(1− sin2 θ) + sin θ(1− 2 sin2 θ) = 3 sin θ − 4 sin3 θ .

Select θ ∈ [−π/2, π/2]. Then, by induction, we determine that yn = sin 3nθ and xn = 2p sin 3nθ, for each
nonnegative integer n, where θ = arcsin(x0/2p).

477. Let S consist of all real numbers of the form a + b
√

2, where a and b are integers. Find all functions
that map S into the set R of reals such that (1) f is increasing, and (2) f(x + y) = f(x) + f(y) for all
x, y in S.

Solution. Since f(0) = f(0) + f(0), f(0) = 0 and f(x) ≥ 0 for x ≥ 0. Let f(1) = u and f(
√

2) = v; u
and v are both nonnegative. Since f(0) = f(x) + f(−x), f(−x) = −f(x) for all x. Since, by induction, it
can be shown that f(nx) = nf(x) for every positive integer n, it follows that

f(a + b
√

2) = au + bv ,

for every pair (a, b) of integers.

Since f is increasing, for every positive integer n, we have that

f(bn
√

2c) ≤ f(n
√

2) ≤ f(bn
√

2c+ 1) ,

so that
bn
√

2cu ≤ nv ≤ (bn
√

2c+ 1)u .

Therefore, (√
2− 1

n

)
u ≤

(
bn
√

2c
n

)
u ≤ v ≤ 1

n
(bn

√
2c+ 1)u ≤

(√
2 +

1
n

)
u ,
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for every positive integer n. It follows that v = u
√

2, so that f(x) = ux for every x ∈ S. It is readily checked
that this equation satisfies the conditions for all nonegative u.

478. Solve the equation √
2 +

√
2 +

√
2 + x +

√
3

√
2−

√
2 +

√
2 + x = 2x

for x ≥ 0

Solution. Since 2 −
√

2 +
√

2 + x ≥ 0, we must have 0 ≤ x ≤ 2. Therefore, there exists a number
t ∈ [0, 1

2π] for which cos t = 1
2x. Now we have that,√

2 +
√

2 +
√

2 + x =

√
2 +

√
2 +

√
2 + 2 cos t

=

√
2 +

√
2 +

√
4 cos2(t/2) =

√
2 +

√
2 + 2 cos(t/2)

=
√

2 + 2 cos(t/4) = 2 cos(t/8) .

Similarly,
√

2−
√

2 +
√

2 + x = 2 sin(t/8). Hence the equation becomes

2 cos
t

8
+ 2

√
3 sin

t

8
= 4 cos t

or
1
2

cos
t

8
+
√

3
2

sin
t

8
= cot t .

Thus,

cos
(

π

3
− t

8

)
= cos t .

Since the argument of the cosine on the left side lies between 0 and π/3, we must have that (π/3)−(t/8) = t,
or t = 8π/27.
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