
Solutions for January

479. Let x, y, z be positive integer for which
1
x

+
1
y

=
1
z

and the greatest common divisor of x and z is 1. Prove that x + y, x − z and y − z are all perfect
squares. Give two examples of triples (x, y, z) that satisfy these conditions.

Solution 1. [G. Ghosn] Since (1/y) = (x− z)/(xz) and gcd (x, x− z) = gcd (z, x− z) = 1, the fractions
on both sides of the equation are in lowest terms, and so x− z = 1 and xz = y. Hence x+ y = x(1+ z) = x2

and y − z = z(x− 1) = z2.

Solution 2. Since z(x + y) = xy and the greatest common divisor of x and z is 1, x, being a divisor of
z(x + y) must be a divisor of x + y and so of y. Let y = ux for some positive integer u. Then z(1 + u) = ux.
Since u and 1 + u have greatest common divisor 1, u must divide z and 1 + u must divide x, Hence z = uv
and x = (1 + u)w, for some positive integers v and w. Therefore uv(1 + u) = u(1 + u)w, whence v = w.

Therefore (x, y, z) = ((1 + u)v, u(1 + u)v, uv). Since x and z have greatest common divisor 1, v = 1 and
(x, y, z) = (1 + u, u(1 + u), u). This satisfies the given equation as well as x + y = (1 + u)2 = x2, x− z = 1
and y − z = u2 = z2. Particular examples are (x, y, z) = (2, 2, 1), (3, 6, 2), (4, 12, 3), (5, 20, 4).

Solution 3. We have that z(x + y) = xy and x(y − z) = yz. Since gcd (x, z) = 1, z and x both must
divide y, so that y = vz = wx for some positive integers v and w. Since z(1 + w)x = xvz, 1 + w = v and
gcd (v, w) = 1. Since wx = vz,,we must have that x = v and z = w and y = vw. This satisfies the equation
as well as x + y = v2, x− z = 1 and y − z = w2.

Solution 4. [K. Huynh] Observe that x > y and z > y. From the equation, we obtain that xz + yz = xy
whence (x − z)(y − z) = z2. Since gcd (x, z) = 1, there is no prime that divides x − z and z2, so that gcd
(x− z, z2) = 1. Therefore x− z = 1, y − z = z2, y = z2 + z and x + y = (z + 1)2.

480. Let a and b be positive real numbers for which 60a = 3 and 60b = 5. Without the use of a calculator or
of logarithms, determine the value of

12
1−a−b
2(1−b) .

Solution 1. [V. Zhou]

12
1−a−b
2(1−b) =

(
60
5

) 1−a−b
2(1−b)

= 60(1−b)·( 1−a−b
2(1−b) )

=
(

60
60a+b

) 1
2

=
(

60
60a · 60b

) 1
2

=
(

60
3× 5

) 1
2

= 2 .

Solution 2. Since 60b = 5, 12b = 51−b and 5 = 12b/(1−b). Since 60a = 3, 225a12a = 12. Therefore

22 = 121−a5−a = 121−a12−ab/(1−b) = 12(1−a−b+ab−ab)/(1−b) = 12(1−a−b)/(1−b) .

Therefore 2 = 12(1−a−b)/2(1−b).

Solution 3. [A. Guo; D. Shi] Since a = log60 3 and b = log60 5,

1− (a + b) = 1− log60(15) = log60(60/15) = log60 4 .
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Also, 1− b = 1− log60 5 = log60 12, so that

1− a− b

1− b
=

log60 4
log60 12

= log12 4 = 2 log12 2 .

Therefore
12

1−a−b
2(1−b) = 12log12 2 = 2 .

481. In a certain town of population 2n + 1, one knows those to whom one is known. For any set A of n
citizens, there is some person among the other n + 1 who knows everyone in A. Show that some citizen
of the town knows all the others.

Solution 1. [K. Huynh] We prove that there is a set of n + 1 people in the town, each of whom knows
(and is known by) each of the rest. First, observe that for any set of k people, with k ≤ n, there is a person
not among them who knows them all. This follows by augmenting the set to n people and applying the
condition of the problem.

Let p1 be any person. There is a person, say p2 who knows p1. A person p3 can be found who knows
both p1 and p2, so that {p1, p2, p3} is a triplet each of whom knows the other two. Suppose, as an induction
hypothesis, that 3 ≤ k ≤ n, and {p1, p2, · · · , pk} is a set of k people any pair of whom know each other. By
the foregoing observation, there is another person pk+1 who knows them all. By induction, we can find a set
{p1, p2, · · · , pn+1}, each pair of whom know each other.

Consider the remaining n people. There must be one among the pi who knows all of these remaining
people. This person pi therefore knows everyone.

Solution 2. Let us suppose that the persons are numbered from 0 to 2n inclusive. The notation
(a : a1, a2, · · · , ak) will mean that a is knows and is known by each of a1, a2, · · · , ak. Begin with the set
{1, 2, · · · , n}; some person, say 0, knows everyone in this set, so that

(0 : 1, 2, 3, · · · , n) .

If person 0, knows everyone else, then we are done. Otherwise, there is a person, say, n + 1, not known to
0, so that everyone in the set {n + 1, n + 2, · · · , 2n}, is known by a person in the first set, say 1, so that

(1 : 0, n + 1, n + 2, · · · , 2n) .

Consider the set {0, 2, 3, · · · , n}. If 1 knows everyone in this set, then 1 knows everyone and we are done. If
1 does not know everyone in this set, then there is someone else, say n + 1, who does, so that

(n + 1 : 0, 1, · · · , n) and (0 : 1, 2, · · · , n + 1) .

If 0 knows everyone in the set {1, n + 2, · · · , 2n}, then 0 knows everyone; if n + 1 knows everyone in this
set, then n + 1 knows everyone, and we are done. If not, then there is a person 2, say, who knows everyone
in the set:

(2 : 0, 1, n + 1, n + 2, · · · , 2n) .

Consider the set {0, 3, · · · , n, n + 1}. If 1 or 2 knows everyone in this set, then 1 or 2 knows everybody and
we are done. Otherwise, there is a person, say n + 2 who knows everyone in the set, so that

(n + 2 : 0, 1, 2, · · · , n + 1) and (0 : 1, 2, · · · , n + 1, n + 2) .

We can continue on in this way either until we find someone that knows everyone, or until we reach the
ith stage for which

(i : 0, 1, 2, · · · , i− 1, n + 1, · · · , 2n) and (n + i : 0, 1, 2, · · · , n, n + 1, · · · , n + i− 1) .
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If we get to the nth stage, then n and 2n each know everyone.

482. A trapezoid whose parallel sides have the lengths a and b is partitioned into two trapezoids of equal
area by a line segment of length c parallel to these sides. Determine c as a function of a and b.

Solution. Let u be the distance between the segment of length a and that of length c, and v the distance
between the segment of length c and that of length b. Then

u + v

u
=

b− a

c− a
.

From the area condition, we have that

2
(

c + a

2

)
u =

(
b + a

2

)
(u + v) =

(
b2 − a2

2(c− a)

)
u ,

whence 2(c2 − a2) = b2 − a2 and c2 = 1
2 (a2 + b2). Therefore

c =

√
a2 + b2

2
.

483. Let A and B be two points on the circumference of a circle, and E be the midpoint of arc AB (either
arc will do). Let P be any point on the minor arc EB and N the foot of the perpendicular from E to
AP . Prove that AN = NP + PB.

Solution 1. Produce ANP to M so that AN = NM . Then EM = AE = EB. Hence 6 EBM = 6 EMB,
so that

6 PBM = 6 EBM − 6 EBP = 6 EMB − 6 EAP = 6 EMB − 6 EMA = 6 PMB .

Therefore PB = PM , so that

AN = NM = NP + PM = NP + PB .

Solution 2. [V. Zhou] Determine Q on AN so that AQ = BP . Then, also, 6 EAQ = 6 EAP = 6 EPB
and AE = EB, so that triangles AEQ and BEP are congruent. Hence EQ = EP and so QN = NP .
Therefore AN = QN + AQ = NP + PB.

Solution 3. [Y. Wang] Let O be the centre and r the radius of the circle. Let F and G be the respective
midpoints of AP and AB. Then FG‖BP and, since 6 AFO = 6 AGO = 90◦, the quadrilateral AFGO is
concyclic.

Let α = 6 AOF = 6 AGF and β = 6 AOE = 6 BOE. Then

6 PAB = 6 FAG = 6 FOG = 6 FOE = 6 NEO = β − α .

Also, |FN | = |OE| sin(β − α) = r sin(β − α) and |AF | = r sinα. By the Law of Sines applied to triangle
AFG,

|FG|
sin(β − α)

=
|AF |
sinα

= r,

whence |FG| = r sin(β − α) = |FN |. Hence AN = PF + FN = PN + 2FN = PN + 2FG = NP + PB.

484. ABC is a triangle with 6 A = 40◦ and 6 B = 60◦. Let D and E be respective points of AB and AC for
which 6 DCB = 70◦ and 6 EBC = 40◦. Furthermore, let F be the point of intersection of DC and EB.
Prove that AF ⊥ BC.
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Solution 1. [J. Schneider] Let AH be the altitude from A to BC. We apply the converse of Ceva’s
Theorem in the trigonometric form to show that the cevians AH, BE and CD concur.

sin 30◦ sin 40◦ sin 10◦

sin 10◦ sin 20◦ sin 70◦
=

sin 30◦(2 sin 20◦ cos 20◦)
sin 20◦ cos 20◦

= 2 sin 30◦ = 1 .

Hence AH, BE and CD concur, so that AH passes through F and the result follows.

Solution 2. [A. Siddhour] In triangle BCF , since 6 CBF = 40◦ and 6 CBF = 40◦, it follows that
6 BFC = 70◦ = 6 CBF and BF = BC. Hence |BF | = a (using the standard convention for lengths of the
sides of the triangle ABC). Assign coordinates:

B ∼ (0, 0), C ∼ (a, 0), A ∼ (c cos 60◦, c sin 60◦), F ∼ (a cos 40◦, a sin 40◦ .

By the Law of sines, we have that c sin 40◦ = a sin 80◦, whence c = 2a cos 40◦.

We have that

−→
FA · −−→BC = (c cos 60◦ − a cos 40◦, c sin 60◦ − a sin 60◦) · (a, 0)

= a(2a cos 40◦ cos 60◦ − a cos 40◦ = a cos 40◦ − a cos 40◦ = 0 ,

from which it follows that AF ⊥ BC.

Solution 3. [Y. Wang] The result will follow if one can show that 6 FAC = 10◦. Since 6 FCA =
6 BCA− 6 DCB = 80◦ − 70◦ = 10◦, it is enough to show that the perpendicular from F to AC bisects AC,
i.e., 2|CF | cos 6 FCA = |AC|.

Since 6 FBC = 40◦ and 6 BCF = 70◦, it follows that 6 BFC = 70◦ so that |CF | = 2|BC| cos 70◦. Since
BC : AC = sin 6 BAC : sin 6 ABC = sin 40◦ : sin 60◦,

2|CF | cos 6 FCA = 4|BC| cos 70◦ cos 10◦ = 4|AC| sin 40◦ sin 20◦ sin 80◦/ sin 60◦ .

For each angle θ,

4 sin θ sin(60◦ + θ) sin(60◦ − θ) = 2 sin θ[cos 2θ − cos 120◦]
= 2 sin θ cos 2θ + 2 sin θ sin 30◦

= sin 3θ − sin θ + sin θ = sin 3θ .

When θ = 20◦, this becomes 4 sin 20◦ sin 40◦ sin 80◦ = sin 60◦. so that 2|CF | cos 6 FCA = |AC|, as desired.

Solution 4. Since 6 BFC = 70◦ = 6 BCD, BF = BC. Let |BF | = |BC| = 1, |AF | = u and |CF | = v.
Let 6 BAF = θ, so that 6 CAF = 40◦ − θ. By the Sine law applied to triangles BFC and AFC,

sin 40◦

sin 70◦
= v =

u sin(40◦ − θ)
sin 10◦

.

By the Sine Law applied to triangle ABF, u = sin 20◦/ sin θ. Hence

sin 40◦

sin 70◦
=

sin 20◦ sin(40◦ − θ)
sin 10◦ sin θ

,

so that
sin 10◦ sin 40◦ sin θ = sin 20◦ cos 20◦ sin(40◦ − θ) ,

whence
2 sin 10◦ sin θ = sin(40◦ − θ) = sin 40◦ cos θ − cos 40◦ sin θ
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and
sin θ(2 sin 10◦ + cos 40◦) = cos θ sin 40◦ .

Now
2 sin 10◦ + cos 40◦ = sin 10◦ + (sin 10◦ + sin 50◦)

= sin 10◦ + 2 sin 30◦ cos 20◦ = sin 10◦ + sin 70◦

= 2 sin 40◦ cos 30◦ =
√

3 sin 40◦ .

Hence
√

3 sin θ = cos θ, so that cot θ =
√

3. Hence θ = 30◦ and the result follows.

Solution 5. [K. Huynh] Let a, b, c be the sides of triangle ABC according to convention. Since 6 BFC =
6 FCB = 70◦, |BF | = |BC| = a. Let the respective feet of the perpendiculars from A and F to BC be P
and Q. Then |BP | = c cos 60◦ = c/2 and |BQ| = a cos 40◦. From the Law of Sines, a sin 80◦ = c sin 40◦, so
that c = 2a cos 40◦. Hence BP = BQ, and the result follows.

Solution 6. [G. Ghosn] Applying the Law of Sines to triangles BCE and BEA using their common side
BE, we obtain that

|EC|
|EA|

=
(

sin 40◦

sin 80◦

)(
sin 40◦

sin 20◦

)
=

sin2 40◦

sin 20◦ sin 80◦
=

2 cos 20◦ sin 40◦

sin 80◦
.

Similarly,
|DA|
|DB|

=
sin 10◦ sin 60◦

sin 40◦ sin 70◦
.

By Ceva’s therem

1 =
|EC|
|EA|

|DA|
|DB|

|MB|
|MC|

=
2 cos 20◦ sin 40◦ sin 10◦ sin 60◦

sin 80◦ sin 40◦ sin 70◦
|MB|
|MC|

=
2cos 80◦ sin 60◦

sin 80◦
|MB|
|MC|

,

whence we find that |MB| : |MC| = tan 80◦ : tan 60◦.

Let AN be an altitude of triangle ABC, so that |AN | = |NB| tan 60◦ = |CN | tan 80◦. Then MB :
MC = NB : NC, so that M = N and the desired result follows.

485. From the foot of each altitude of the triangle, perpendiculars are dropped to the other two sides. Prove
that the six feet of these perpendiculars lie on a circle.

Solution 1. Let ABC be the triangle with altitudes AP , BQ and CR; let H be the orthocentre. Let
PU ⊥ AB, QV ⊥ BC, RW ⊥ CA, PX ⊥ CA, QY ⊥ AB and RZ ⊥ BC, where U, Y ∈ AB; V,Z ∈ BC;
and W,X ∈ CA.

Consider triangles AQR and ABC. Since ARHQ is concyclic (right angles at Q and R),

6 ARQ = 6 AHQ = 6 BHP = 90◦ − 6 HBP = 90◦ − 6 QBC = 6 ACB .

Similarly, 6 AQR = 6 ABC. Thus, triangles AQR and ABC are similar, the similarity being implemented
by a dilatation of centre A followed by a reflection about the bisector of angle BAC. Since QY and RW
are altitudes of triangle AQR, triangle AY W is formed from triangle AQR as triangle AQR is formed from
triangle ABC. Hence triangles AY W and AQR are similar by the combination of a dilatation with centre
A and a reflection about the bisector of angle BAC.
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Therefore, triangle AY W and ABC are directly similar and Y W‖BC. Similarly triangles BZU and
BCA as well as triangles CXV and CAB are similar and ZU‖CA and XV ‖AB. (We note that this means
that XWY UZV is a hexagon with opposite sides parallel, although this is not needed here.)

Since PX‖HQ and PU‖HR, AU : AR = AP : AH = AX : AQ, so that there is a dilatation taking
U → R, P → H and X → Q. Therefore UX‖RQ and triangle AXU is similar to triangle AQR and to
triangle ABC.

Consider quadrilateral UZV X.

6 UZV + 6 UXV = (180◦ − 6 BZU) + (180◦ − 6 AXU − 6 CXV )
= (180◦ − 6 ACB) + (180◦ − 6 ABC − 6 BAC) = 180◦ .

Hence UZV X is concyclic. Similarly, V XWY and WY UZ are concyclic.

Since triangles AY W and AXU are similar with 6 AWY = 6 AUX and 6 AY W = 6 AXU , XWY U is
concyclic. Similarly, Y UZV and ZV XW are concylclic. Hence XWY UZV is a hexagon, any consecutive
four vertices of which are concylcic, and so is itself concyclic.

Solution 2. [K. Huynh] Let a, b, c be the lengths of the sides and A, B, C the angles of the triangle ABC
according to convention. Use the notation of Solution 1. We have that |BU | = |BP | cos B = (c cos B) cos B =
c cos2 B. Similarly, |BZ| = a cos2 B, |AY | = c cos2 A and |CV | = a cos2 C. Therefore, |BY | = c(1−cos2 A) =
c sin2 A and |CV | = a(1− cos2 C) = a sin2 C.

Since a sinC = c sinA,

|BU ||BY | = (c cos2 B)(a sin2 A) = cos2 B(c sinA)2

= cos2 B(a sinC)2 = (a cos2 B)(a sin2 C) = |BZ||BV | .

from which, by a power-of-the-point argument [give details!], we deduce that Y UZV is concyclic. Similarly,
ZV XW and XWY U are concyclic.

Suppose that the circumcircle of Y UZV intersects AZ at L and the circumcircle of ZV XW intersects
AZ at M . Since XWY U is concyclic, |AY ||AU | = |AW ||AX|. Therefore,

|AL||AZ| = |AY ||AU | = |AW ||AX| = |AM ||AZ| .

Hence L = M . Thus, the circumcircles of Y UZV and ZV XW share three noncollinear points, Z, V and
L = M , and so must coincide. Similarly, each coincides with the circumcircle of XWY U and the result
follows.
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