
Solutions for June

500. Find all sets of distinct integers 1 < a < b < c < d for which abcd− 1 is divisible by (a− 1)(b− 1)(c−
1)(d− 1).

Solution. Let x = abcd − 1 and y = (a − 1)(b − 1)(c − 1)(d − 1). Suppose that y divides x. If any one
of a, b, c, d is even, then x is odd and so y must be odd and all of a, b, c, d are even. Thus, a, b, c, d are all of
the same parity. Note that

x

y
<

abcd

(a− 1)(b− 1)(c− 1)(d− 1)
=

(
a

a− 1

)(
b

b− 1

)(
c

c− 1

)(
d

d− 1

)
.

Observe that, if a ≥ 5, then
x

y
<

(
5
4

)(
6
5

)(
7
6

)(
8
7

)
= 2 ,

and there are no possibilities. If a = 4, x is odd, but

x

y
<

(
4
3

)(
6
5

)(
8
7

)(
10
9

)
< 3 ,

and again there are no possibilities. If a = 3, then

x

y
<

(
3
2

)(
5
4

)(
7
6

)(
9
8

)
< 3 ,

and so x/y = 2. Since x = 2y and x is not divisible by 3, then neither is y, so that none of b− 1, c− 1, d− 1
is a multiple of 3. Therefore, if b 6= 5, then b ≥ 9 and

x

y
<

(
3
2

)(
9
8

)(
11
10

)(
15
14

)
< 2 ,

and there are no possibilities. Therefore, when a = 3, b = 5 and we are led to the equation 15cd− 1 = 2y =
16(c− 1)(d− 1), which is equivalent to

(c− 16)(d− 16) = 239 .

Since 239 is prime, the solution is unique: (c, d) = (17, 255). We obtain the solution

(a, b, c, d) = (3, 5, 17, 255) .

Finally, suppose that a, b, c, d are all even and x/y is odd. Since

x

y
<

(
2
1

)(
4
3

)(
6
5

)(
8
7

)
< 4 ,

and we find that x/y = 3. Thus, none of b, c, d is divisible by 3. If b ≥ 4, then

x

y
<

(
2
1

)(
8
7

)(
10
9

)(
14
13

)
< 3 ,

and there are no possibilities. Then b = 4 and we obtain that 8cd− 1 = 3y = 9(c− 1)(d− 1), or

(c− 9)(d− 9) = 71 .

1



As 71 is prime, the solution is unique: (c, d) = (10, 80). Thus, we obtain the second and final solution

(a, b, c, d) = (2, 4, 10, 80) .

501. Given a list of 3n not necessarily distinct elements of a set S, determine necessary and sufficient condi-
tions under which these 3n elements can be divided into n triples, none of which consist of three distinct
elements.

Solution. A necessary and sufficient condition is that at most n of the 3n elements in the list occur an
odd number of times.

Suppose that this condition is satisfied. Distribute one of each element appearing an odd number of
times into distinct triples. Then each of the remaining elements in S occurs an even number of times, so
we can sort them into at least n equal pairs (not necessarily all distinct). Sort one of these pairs into each
triple, and then (if necessary) fill up the triples in any way with what is left over. Then each triple contains
a pair of like elements.

On the other hand, suppose that we have distributed the 3n elements as specified. Then there must be
a least n pairs of like elements (again, not necessarily distinct pairs). There are n elements not in these pairs,
and these are the only possibilities for elements that occur an odd number of times. The result follows.

502. A set consisting of n men and n women is partitioned at random into n disjoint pairs of people. What
are the expected value and variance of the number of male-female couples that result? (The expected
value E is the average of the number N of male-female couples over all possibilities, i.e. the sum of the
numbers of male-female couples for the possibilities divided by the number of possibilities. The variance
is the average of the difference (E−N)2 over all possibilities, i.e. the sum of the values of (E−N)2 for
the possibilities divided by the number of possibilities.)

Comment. The answer is

E(X) =
n2

2n− 1
Var (X) =

2n2(n− 1)2

(2n− 1)2(2n− 3)

where X is the number of man-woman matches. The solution relies on some statistical theory and is given
in American Mathematical Monthly 107 (1998), 866-867.

A direct assault seems difficult. There are

un =

(
2n
2

)(
2n−2

2

)
· · ·

(
4
2

)(
2
2

)
n!

=
(2n)!
2nn

= (2n− 1)(2n− 3) · · · (3)(1)

ways of pairing off the 2n people. The number of men not paired off with women must be even, as they are
paired with each other, and similarly for the women. Suppose that we want n−2k man-woman pairs. There
are

(
n
2k

)
ways of picking the men to be paired off with each other and so

(
n
2k

)
uk of selecting and pairing them

off. Similarly, there are
(

n
2k

)
uk of selecting and pairing off the 2k women not in the couples. As for the n−2k

men to be paired off with women, there are (n − 2k)! ways of pairing them off with the women not paired
with other women. Therefore the number of ways of pairing so that there are exactly n − 2k man-woman
couples is [(

n

2k

)
uk

]2

(n− 2k)!

and the average number of couples over all the pairings is[(
n

2k

)
uk

]2

(n− 2k)!(n− 2k)÷ un .
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503. A natural number is perfect if it is the sum of its proper positive divisors. Prove that no two consecutive
numbers can both be perfect.

Solution. We review basic information about the sum of divisors function. For any positive integer
n, the function σ(n) is the sum of all the positive divisors of n, including both 1 and n. For n ≥ 2,
σ(n) ≥ n+1 with equality if and only if n is prime. If m and n have greatest common divisor equal to 1, then
σ(mn) = σ(m)σ(n). For any prime p and positive integer exponent c, we have that σ(pc) = (pc+1−1)/(p−1).
A positive integer n is perfect if and only if σ(n) = 2n.

Lemma. (Euclid-Euler) An even positive integer r is perfect if and only if it is of the form r = 2p−1(2p−1)
where both p and 2p − 1 are prime.

Proof of Lemma. Let n be an even perfect number. Then n = 2km where k ≥ 1 and m is odd, so that

2k+1m = 2n = σ(n) = σ(2k)σ(m) = (2k+1 − 1)σ(m) .

Since the greatest common divisor of 2k+1 and 2k+1 − 1 is 1, there exists a positive integer w for which
m = (2k+1 − 1)w and σ(m) = 2k+1w.

Suppose, if possible, that w > 1. Then the divisors of m include the distinct 1, w, m so that

σ(m) ≥ 1 + w + m = 1 + 2k+1w > σ(m) ,

an impossibility. Therefore w = 1 and σ(m) = 2k+1 = m + 1, so that m = 2k+1 − 1 is prime. This forces
also k + 1 to be prime (why?) and the necessity of the condition follows. It is straightforward to verify that
each number of the given form is perfect. ♣

Since 5 and 7 are not perfect numbers, we need not consider the case where the even number of the pair
is 6 = 2(22 − 1). We obtain the desired result by showing that for any odd prime p, neither of the numbers
u = 2p−1(2p − 1)− 1 and v = 2p−1(2p − 1) + 1 is perfect.

Observe that
2p−1(2p − 1) = 2× 4p−1 − 4(p−1)/2 ≡ 2× 4− 4 = 4

modulo 12, since every positive integer power of 4 is congruent to 4 modulo 12. Hence u ≡ 3 and v ≡ 5 (mod
12), and so neither u nor v are squares. Hence each has an even number of divisors, that can be paired off
as (d, u/d) and (d, v/d) respectively, where d is less than the square root of u and v respectively.

We have that u ≡ −1 (mod 4), so that, as d(u/d) = u ≡ −1, {d, u/d} ≡ {1,−1} and d + (u/d) ≡ 0
(mod 4). Hence

σ(u) =
∑

{d + (n/d) : d|u, d <
√

u} ≡ 0

modulo 4, while 2u ≡ 6 (mod 4). Hence σ(u) 6= 2u and u is not perfect.

We have that v ≡ −1 (mod 3), so that {d, v/d} ≡ {1,−1} and d + (v/d) ≡ 0 (mod 3), for every divisor
d of v. Hence

σ(v) =
∑

{d + (n/d) : d|v, d <
√

v} ≡ 0

modulo 3, while 2v ≡ 10 (mod 12). Hence σ(v) 6= 2v and v is not perfect.

504. Find all functions f taking the real numbers into the real numbers for which the following conditions
hold simultaneously:

(a) f(x + f(y) + yf(x)) = y + f(x) + xf(y) for every real pair (x, y);

(b) {f(x)/x : x 6= 0} is a finite set.

Solution. The function f must be the identity function f(x) = x for all x.

By (b), there exists a number k such that the set Sk = {x : f(x) = kx} is infinite. From (a), for all
x ∈ Sk,

f(x + kx + kx2) = f(x + f(x) + xf(x)) = x + kx + kx2 .
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Hence S1 has infinitely many elements.

Suppose, if possible, that there exists y such that f(y)/y = m 6= 1. Then, for all x ∈ S1,

f(x + my + yx) = f(x + f(y) + yf(x)) = y + f(x) + xf(y) = y + x + mxy .

As x ranges over the infinite set S1, by (b), it is not possible that

f(x + my + yx)
x + my + yx

=
x(1 + my) + y

x(1 + y) + my

takes infinitely many values. Hence, there are x1 and x2 in S for which x1 6= x2 and

f(x1 + my + yx1)
x1 + my + yx1

=
f(x2 + my + yx2)

x2 + my + yx2
.

Then,
[x1(1 + my) + y][x2(1 + y) + my] = [x2(1 + my) + y][x1(1 + y) + my]

so that, since (x1 − x2)y 6= 0,

(x1 − x2)my(1 + my) = (x1 − x2)y(1 + y) ⇔ (m2 − 1)y + (m− 1) = 0 ⇔ (m + 1)y + 1 = 0 .

Thus, m = −(y + 1)/y, so that f(y) = my = −(y + 1). This means that y is uniquely determined by m and
that Sm is a singleton.

For all x ∈ S1, by condition (i), we find that

f((y + 1)(x− 1)) = f(x− (y + 1) + yx) = f(x + f(y) + yf(x)) = y + f(x) + xf(y)

= y + x− x(y + 1) = −y(x− 1) =
−y

y + 1
(y + 1)(x− 1)

=
−1
m

(y + 1)(x− 1) .

But {(y + 1)(x− 1) : x ∈ S1} is an infinite set, so S−1/m must be infinite.

However, we can go through the foregoing argument with m replaced by −1/m and deduce, either that
f(x)/x takes infinitely many values or that S−1/m is a singleton, both of which yield constradictions. The
result follows.

505. What is the largest cubical present that can be completely wrapped (without cutting) by a unit square
of wrapping paper?

Solution. The side of the largest possible cubical present that can be wrapped is
√

2/4.

Let s be the side length of the cube. For any point on the cube, there is another point whose distance
away is at least 2s, so that for each point on the square, there is a point whose distance away from it is at
least 2s. This is true in particular for the centre of the square, so the diagonal of the square is at least 4s.
Hence

√
2 ≥ 4s, so that s ≤

√
2/4.

On the other hand, if we have a cube of this size, we can place it right in the centre of the wrapping
square with its sides parallel to the diagonals of the square, and fold the corners of the square over the lateral
faces of the cube with them meeting in the middle of the top face of the cube.

506. A two-person game is played as follows. A position consists of a pair (a, b) of positive integers. Playes
move alternately. A move consists of decreasing the larger number in the current position by any positive
multiple of the smaller number, as long as the result remains positive. The first player unable to make
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a move loses. (This happens, for example, when a = b.) Determine those positions (a, b) from which
the first player can guarantee a win with optimal play.

Solution. Let φ = 1
2 (1 +

√
5), the larger root of the polynomial x2 − x − 1. Note that φ is irrational,

that 1/φ = φ− 1 and that 0 < 1/φ < 1 < φ < 2. We show that the first player can guarantee a win if and
only if the ratio of the larger to the smaller number exceeds φ.

Let W be the set of pairs {a, b} with a > φb and L the set of pairs with b < a < φb. The result will
follow if we prove that, from any pair in W, the next player can leave a pair in L and that, from any pair in
L, the next player must go to a pair in W.

Suppose that {a, b} ∈ W. Then a/b > φ and there is a (unique) poaitive integer k for which φ − 1 <
(a/b)− k < φ. Choosing this k yields the pair {b, a− bk}. Since

b

a− bk
=

1
(a/b)− k

<
1

φ− 1
= φ ,

the pair {b, a− bk} ∈ L.

On the other hand, if {a, b} ∈ L, then b < a < φb, so that a < 2b. The only legal move leads to the pair
{b, a− b}. But then

b

a− b
=

1
(a/b)− 1

>
1

φ− 1
= φ ,

so that {a, a− b} ∈ W.

Therefore, the first player has a winning strategy if and only if presented with a pair {a, b} with a > φb.
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