
Solutions for November

521. On a 8 × 8 chessboard, either +1 or −1 is written in each square cell. Let Ak be the product of all
the numbers in the kth row, and Bk the product of all the numbers in the kth column of the board
(k = 1, 2, · · · , 8). Prove that the number

A1 + A2 + · · ·+ A8 + B1 + B2 + · · ·+ B8

is a multiple of 4.

Solution 1. it is clear that the value of each Ak and Bk is +1 or −1. Assume that p of the eight Ak

have the value 1 and 8− p have the value −1. Similarly, suppose that q of the eight Bk have the value 1 and
8 − q have the value −1. The each product is the product of all the entries, the products A1A2 · · ·A8 and
B1B2 · · ·B8 are equal, so that (−1)8−p = (−1)8−q and p and q have the same parity. We have that

A1 + A2 + · · ·+ A8 + B1 + B2 + · · ·+ B8 = p + (8− p)(−1) + q + (8− q)(−1) = 2(p + q)− 16 .

Since p + q is even, both terms on the right are divisible by 4 and the result follows.

Solution 2. The proof is by induction on the number of negative entries in the square array. If all of
the entries are equal to +1, then the sum in the problem is equal to 16, which is divisible by 4. Let n be
a positive integer, and suppose that the result holds when there are n− 1 entries in the array equal to −1.
Let an array U be given for which there are exactly n entries equal to −1. Let V be the array obtained from
U by changing exactly one of the entries −1 to +1, say the entry in the rth row and sth column. Then the
numbers Ai and Bj are the same for both arrays when i 6= r and j 6= s.

If Ak and Bk denote the row and column products for the matrix V , then the sum of the problem for
the array U is obtained from that for the matrix V by the addition of −2Ar − 2Bs = −2(Ar + Bs). Since
(Ar, Bs) has one of the values (+1,+1), (+1,−1), (−1,+1), (−1,−1), it follows that the sum is altered by a
multiple of 4. Since by the induction hypothesis, the sum for U is divisible by 4, then so also must be the
sum for V .

522. (a) Prove that, in each scalene triangle, the angle bisector from one of its vertices is always “between”
the median and the altitude from the same vertex.

(b) Find the measures of the angles of a triangle if the lengths of the median, the angle bisector and the
altitude from one of its vertices are in the ratio

√
5 :
√

2 : 1.

Solution 1. (a) Let ABC be a triangle and let P , K and M be the respective intersections of the altitude,
angle bisector and median from A in the side BC. Suppose, wolog, AB < AC. Then (by Pythagoras’
Theorem, for example), BP < CP , so that 6 BAP < 6 CAP and the bisector AK of angle A falls within the
angle CAP . Hence, BP < BK. Since KB : KC = AB : AC, KB < KC and the midpoint M of BC must
lie in the segment KC. The result follows.

(b) Use the same notation as in (a). We may assume that |AP | = 1, |AK| =
√

2 and |AM | =
√

5. We
first note that the altitude from A must lie outside of the triangle. Suppose, on the contrary, that P lies on
the side BC. By Pythagoras’ Theorem, we have that |PK| = 1, so that 6 PAK = 45◦. Then

6 BAP + 45◦ = 6 BAK = 6 CAK = 6 CAP − 45◦ ,

so that
6 CAP = 6 BAP + 90◦ > 90◦ ,

which is impossible.

Hence P must lie on CB produced and B lies in the segment PK. Let |PB| = x, so that |BK| = 1−x,
|PM | = 2 (by Pythagoras’ Theorem), |KM | = 1, |MC| = 2− x and |PC| = 4− x. We have that

45◦ − 6 PAB = 6 BAK = 6 CAK = 6 PAC − 45◦ ,
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so that 6 PAC = 90◦ − 6 PAB and

4− x = tan 6 PAC = cot 6 PAB =
1
x

.

Thus, x2− 4x + 1 = 0 and x = 2−
√

3. We reject the larger root as it would be the reciprocal of the smaller
and so it would be the tangent of 6 PAC which is larger than 6 PAB.

Therefore, tan 6 PAB = 2 −
√

3 and so, from the double angle formula, tan 2 6 PAB = 1/
√

3 Thus,
6 PAB = 15◦, 6 PAC = 75◦ and 6 BAC = 60◦. Since 6 PBA = 75◦, it follows that 6 ABC = 105◦ and
6 BCA = 15◦.

(It can also be checked that |AB| = 2
√

2−
√

3, |AC| = 2
√

2 +
√

3 and |BC| = 2
√

3.

Solution 2. (a) can be established as before. For (b), assume wolog that AC > AB. We first establish
that 6 ABC is obtuse. Let 6 BAC = α, 6 ABC = β and 6 ACB = γ. Since β > γ,

6 AKC = β + α/2 > γ + α/2 = 6 AKB ,

so that 6 AKB < 90◦ (which agrees with 6 AKP = 45◦) and 6 AKC > 90◦ (more precisely, 6 AKC = 135◦).
Hence β + α/2 = 6 AKC = 135◦, so that 180◦ − β − γ = α = 270◦ − 2β and β = γ + 90◦ > 90◦.

By Pythagoras’s theorem, |PK| = 1, |PM | = 2 and |KM | = 1. Let |PB| = x (x < 1), so that
|BK| = 1− x, |BM | = 2− x, |BC| = 2|BM | = 4− 2x, and |PC| = 4− x.

The triangles ACP and BAP are similar since both are right and

6 PAB = 6 ABC − 90◦ = β − 90◦ = γ = 6 ACP .

Therefore AP : PC = BP : AP , or, equivalently, 1 : (4− x) = x : 1. Therefore, x is the smaller of the roots
of x2 − 4x + 1 = 0, namely 2−

√
3.

Thus, tan 6 PAB = 2 −
√

3, so that 6 PAB = 15◦. (One way to check this is to use the double angle
formula to find the tangent of 15◦.) Therefore, γ = 6 ACB = 6 PAB = 15◦, β = 6 ABC = γ + 90◦ = 105◦

and α = 6 BAC = 60◦.

Solution 3. [J. Schneider] Wolog, let 6 B > 6 C. we use the notation of the first solution. If B is obtuse,
then B lies between P and K. Since AB < AC, BK : KC = AB : AC, so that BK < KC and M lies
between K and C.

Let the angle at B be acute. Then BP : PC = tan C : tan B, BK : KC = c : b = sinC : sinB and
BM : MC = 1 : 1. Since sinC < sinB and cos C > cos B,

tanC

tanB
=

cos B

cos C
· sinC

sinB
<

sinC

sinB
< 1 ,

and the result follows.

(b) Let x = |MC| and coordinatize the situation by A ∼ (0, 1), B ∼ (0, 0), K ∼ (1, 0), M ∼ (2, 0),
C ∼ (2 + x, 0) and B ∼ (2− x, 0). The proportion AB2 : AC2 = AK2 : KC2 leads to the equation

(x + 1)2

(x− 1)2
=

x2 + 4x + 5
x2 − 4x + 5

,

which simplifies to x(x2 − 3) = 0. Since vertAK| < |AC|, we reject x = −
√

3. Hence x =
√

3. Note that
this places B to the right of the origin and so angle B is obtuse.

Thus |AB| = 2
√

2−
√

3, |AC| = 2
√

2 +
√

3 and |BC| = 2
√

3. Angle A can be identified using the Law
of Cosines and the remaining angles from their tangents.
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523. Let ABC be an isosceles triangle with AB = AC. The segments BC and AC are used as hypotenuses to
construct three right triangles BCM , BCN and ACP . Prove that, if 6 ACP + 6 BCM + 6 BCN = 90◦,
then the triangle MPN is isosceles.

Solution 1. Clearly, M and N are points on a circle whose diameter is BC. Let O be the midpoint of
BC and the centre of this circle, and Q the intersection point of the ray PO and the circle. We have that

6 BCM + 6 BCN =
1
2
arc BM + arc BN) . (1)

Observe that, as triangle ABC is isosceles with O the midpoint of its base BC, AO ⊥ BC. Therefore,
O and P are on the circle with diameter AC, so that

90◦ − 6 ACP = 6 PAC = 6 POC = 6 BOQ . (2)

We are given that 90◦ − 6 ACP = 6 BCM + 6 BCN , so that (1) and (2) yield

arc BQ = 6 BOQ =
1
2
(arc BM + arc BN)

or
arc BN + arc NQ + arc BQ =

1
2
(arc BN + arc MN + arc BN)

which in turn is equivalent to arc NQ = 1
2 (arc MN). Thus, Q is the midpoint of the arc MN , so that PQ

is the right bisector of the segment MN . The result follows.

Solution 2. [J. Schneider] Note that triangle MPN is isosceles with PM = PN if and only if the right
bisector of MN passes through P .

Let D be the midpoint of BC. Since ABC is isosceles, AD ⊥ BC and D lies on the circle with diameter
AC. Thus, APCD is concyclic and 6 ADP = 6 ACP .

Since D is the centre of the circle with diameter BC that contains M and N , 6 BDN = 2 6 BCN and
6 BDM = 26 BCM . Let X be the midpoint of MN . Then DX right bisects MN and bisects angle MDN .
Hence

6 BDX =
1
2
(6 BDM + 6 BDN) = 6 BCN + 6 BCM .

Suppose that 6 BCN + 6 BCM + 6 ACP = 90◦, as hypothesized. Then

6 PDC = 90◦ − 6 ADP = 90◦ − 6 ACP = 6 BCM + 6 BCN = 6 BDX .

Hence X, D, P are collinear. But DX is the right bisector of MN , and so is DP . Hence triangle MPN is
isosceles.

Comment. The above argument applies when all triangles are external to triangle ABC. It can be
adapted to the other cases.

524. Solve the irrational equation

7√
x2 − 10x + 26 +

√
x2 − 10x + 29 +

√
x2 − 10x + 41

= x4 − 9x3 + 16x2 + 15x + 26 .

Solution. Observe that

x4 − 9x3 + 16x2 + 15x + 26 = (x2 + x + 1)(x− 5)2 + 1 .
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Since x2 + x + 1 = (x + 1
2 )2 + 3

4 > 0 for all x, the quartic on the right side of the equation is never less than
1 and is equal to 1 if and only if x = 5.

Since x2− 10x + 25 + k = (x− 5)2 + k for k = 1, 4, 16, the left side of the equation is never greater than
1 and is equal to 1 if and only if x = 5. It follows that x = 5 is the only solution of the equation.

525. The circle inscribed in the triangle ABC divides the median from A into three segments of the same
length. If the area of ABC is 6

√
14, calculate the lengths of its sides.

Solution. Let the median from A meet the side BC at M . Let a, b, c denote the side lengths of ABC as
usual, and let the length of the median AM be 3u. Suppose that the incircle of triangle ABC touches sides
BC, CA, AB at U , V , W , respectively. Suppose, wolog, that AB < AC, so that U lies between B and M .

By the power of a point, we have that |AV |2 = 2u2 = |MU |2, so that

(1/2)(b + c− a) = |AV | = |MU | = (1/2)a− (1/2)(a + c− b) = (1/2)(b− c) ,

and 8u2 = b2− 2bc + c2. Hence b + c− a = b− c, whence a = 2c and |BM | = |MC| = |AB| = c. By the Law
of Cosines applied to triangles ABM and AMC, with α = 6 AMB,

c2 = c2 + (3u)2 − 6uc cos α

and
b2 = c2 + (3u)2 + 6uc cos α ,

whence
b2 = c2 + 18u2 = (9/4)(b2 − 2bc + c2) .

This simplifies to
0 = 5b2 − 18bc + 13c2 = (b− c)(5b− 13c) .

Since b 6= c (otherwise, the median from A would be the angle bisector of A and the incircle would touch BC
at M), we must have b = 13c/5. Hence (a, b, c) = (2c, 13c/5, c), the semiperimeter of the triangle is 14c/5
and the square of its area is (1/54)(14c)(4c)c(9c) = (c4/54)(14)(36). Since we are given that the square of
the area is (14)(36), c = 5 and the dimensions of the triangle are (10, 5, 13).

Comment. All triangles described in the first sentence of the problem have a common property, in
that their sides are in the ratio 10 : 5 : 13. This is, in fact, the essence of the problem. There are many
modifications with the same core idea; for example, instead of giving the area of the triangle, we could give
the length of the altitude from B, of the angle bisector from C or of the median from A. Recall that these
last three quantities are given respectively by

hb =
2
b

√
s(s− a)(s− b)(s− c)

lc =
2

a + b

√
abs(s− c)

ma =
1
2

√
2b2 + 2c2 − a2

where s = 1
2 (a + b + c) is the semiperimeter of the triangle.

526. For the non-negative numbers a, b, c, prove the inequality

4(a + b + c) ≥ 3(a +
√

ab + 3
√

abc) .

When does equality hold?
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Solution 1. Equality holds when a = b = c = 0. The inequality clearly holds when a = 0 and when
b = 0, so henceforth we will assume that ab 6= 0. Define the nonnegative numbers u and v by

u2 =
b

a
and v3 =

bc

a2
.

Dividing the inequality through by a, we see that it is equivalent to

4
(

1 + u2 +
v3

u2

)
≥ 3(1 + u + v)

or
4(u2 + u4 + v3) ≥ 3(u2 + u3 + u2v) .

The difference between the two members of the last inequality is

4u4 − 3u3 + u2 + 4v3 − 3u2v = u2(2u− 1)2 + (2v − u)2(v + u) .

Because of the square terms, it is always nonnegative, and it is equal to zero if and only if (u, v) = (1/2, 1/4).
This is achieved when a : b : c = 16 : 4 : 1. Therefore, the inequality always holds and equality occurs when
(a, b, c) = (16t, 4t, t) for some nonnegative value of t.

Comment. Since the genesis of the solution is far from obvious, it might be worth commenting on how it
was arrived at. It is straightforward to dispose of the cases in which any of the variables vanish, so we may as
well suppose that all are positive. We observe that the left and right sides of the inequality are homogeneous
of degree 1, so that any scalar mutiple of a solution vector is also a solution. Thus, we might as well assume
that a = 1. The next step is to get rid of the radicals, which we can do by assuming the quantity under
the square root sign is u2 and under the cube root sign is v3; it is now a matter of backtracking to define
these in terms of a, b and c. Some manipulation gives an equivalent polynomial inequality in terms of u
and v. We now look at the difference between the two sides and investigate the possibility of getting some
representation of this difference in terms of squares and things known to be positive. However, all these
machinations can be avoided by a little insight, as we shall see in the next solution.

4u4 − 3u3 + u2 is almost a square, so we might as well complete it by subtracting u3 and adding it to
the rest of the expression to get (2u2− u)2 + (4v3− 3u2v + u3). We notice that the expression in the second
parentheses vanished when v = −u, which makes v + u a factor of it. The remaining factor turns out to be
(2v − u)2 and we are finished.

Solution 2. [J. Schneider] Let a = u, b = v/4 and c = w/16. The inequality is equivalent to

4
(

u +
v

4
+

w

16

)
≥ 3

(
u +

1
2
√

uv +
1
4

3
√

uvw

)
.

Since 3u ≥ 3u, (3/4)(u + v) ≥ (3/2)
√

uv and (1/4)(u + v + w) ≥ 3 3
√

uvw (the last two by the arithmetic-
geometric means inequality), the desired inequality follows. Equality occurs if and only if u = v = w, or
a = 4b = 16c.

Solution 3. The left side of the inequality can be rewritten

4(a + b + c) = 3a +
3
4
(a + 4b) +

1
4
(a + 4b + 16c) .

Using the arithmetic-geometric means inequality, we have that

a + 4b ≥ 2
√

a(4b) = 4
√

ab

and
a + 4b + 16c ≥ 3 3

√
a(4b)(16c) = 12 3

√
abc ,
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from which the desired result follows. Equality occurs if and only if a = 4b = 16c.

527. Consider the set A of the 2n−digit natural numbers, with 1 and 2 each occurring n times as a digit,
and the set B of the n−digit numbers all of whose digits are 1, 2, 3, 4 with the digits 1 and 2 occurring
with equal frequency. Show that A and B contain the same number of elements (i.e., have the same
cardinality).

Solution 1. We show that A and B have the same number of elements by pairing off the elements of
one set with elements of the other. Suppose that a number in A is given; separate it into n consecutive
pairs of digits; these pairs will be one of 11, 12, 21, 22. Observe that, since the digits 1 and 2 occur equally
frequently, the pairs 11 and 22 must occur equally frequently. Moving from left to right, we construct an
n− digit number by replacing each pair 11 by the digit 1, 22 by the digit 2, 12 by the digit 3 and 21 by the
digit 4. Thus, for example, the number 1222112112112212 corresponds to 32143123. Because the number
in A has equally many pairs 11 and 22, the corresponding number will have 1 and 2 occurring equally often
and will lie in B.

Conversely, given an n−digits number in B, construct a 2n−digit number by replacing each 1 by 11, 2
by 22, 3 by 12 and 4 by 21. Because 1 and 2 occur equally often, the pairs 11 and 22 will occur equally often
in the resulting number, which will then belong to A. Thus the correspondence is one-one and the result
follows.

Comment. The number of elements in A is
(
2n
n

)
, the number of ways of selecting the places for the n

ones. To select numbers in B with r ≤ n/2 digits equal to 1, we can choose the places for the ones in
(
n
r

)
ways, the places for the twos in

(
n−r

r

)
ways. This leaves n − 2r places left over, which can be filled with

either threes or fours in 22n−r ways. Thus, the number of elements in B is

bn/2c∑
r=0

(
n

r

)(
n− r

r

)
22n−2 .

The current problem provides a combinatorial way of verifying the equality of these two expressions. Can
you find an alegebraic demonstration?
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