
Solutions for September.

514. Prove that there do not exist polynomials f(x) and g(x) with complex coefficients for which

logb x =
f(x)
g(x)

where b is any base exceeding 1.

Solution 1. Suppose that the given equation is possible. Then we must have, for each positive integer
n,

f(xn)
g(xn)

= logb xn = n logb x =
nf(x)
g(x)

,

so that f(xn)g(x) = nf(x)g(xn). However, by comparing the leading coefficients of the two sides, we see
that this is impossible.

Solution 2. We presume that the relation is to be an identity for all x for which both sides are defined,
in particular when x is a positive integer. Since logb x = log2 x/ log2 b, logb x is a constant multiple of log2 x.
Thus, it is enough to prove the result with b = 2.

It is easily established by induction that, for each positive integer x, x ≤ 2x−1, so that log2 x ≤ x − 1.
Applying this to x1/2, where x is a square, this yields

log2 x = 2 log2(x
1/2) ≤ 2(x1/2 − 1) < 2x1/2 .

Suppose, if possible, that there exist polynomials f(x) and g(x) such that, for every positive integer x,

log2 x =
f(x)
g(x)

.

We may suppose that the leading coefficient of g(x) is 1 and that the respective degrees of f(x) and g(x) are
the positive integers m and n.

Suppose that

f(x) = amxm + am−1x
m−1 + · · ·+ a1x + a0 = amxm(1 + am−1x

−1 + · · ·+ a0x
−m)

and
f(x) = xn + bn−1x

n−1 + · · ·+ b1x + b0 = xn(1 + bn−1x
−1 + bn−2x

−2 + · · ·+ b0x
−n) .

Since
|x−1(am−1 + · · ·+ a0x

1−m)| ≤ x−1(|am−1|+ · · ·+ |a0|) ≤ Mx−1

and
|x−1(bn−1 + · · ·+ b0x

1−n)| ≤ x−1(|bn−1|+ · · ·+ |a0|) ≤ Mx−1

where M is the maximum of |am−1| + · · · + |a0| and |bn−1| + · · · + |b0|, and we can select N such that
Mx−1 < 1/2, for x > N , we have that

1
2

< 1− |am−1x
−1 + · · ·+ a0x

−m| ≤ 1 + am−1x
−1 + · · ·+ a0x

−m < 1 + |am−1x
−1 · · · aox

−m| < 3
2

and

1
2

< 1− |bn−1x
−1 + · · ·+ b0x

−m| ≤ 1 + bn−1x
−1 + · · ·+ b0x

−m < 1 + |bm−1x
−1 · · · b0x

−m| < 3
2

,

so that
1
3

<
1 + am−1x

−1 + · · ·+ a0x
−m

1 + bn−1x−1 + · · ·+ b0x−
< 3 .
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Then, for x > 2N , f(x)/g(x) lies between 1
3amxm−n and 3amxm−n, so that am must be positive.

If m ≤ n, then f(x)/g(x) is bounded whereas log2 x is not. Hence m > n. But then for x a large square
integer exceeding 2M ,

1 = (log2 x)−1(f(x)/g(x)) > (1/2x1/2)[(1/3)amxm−n] = (1/6)amxm−(1/2)−n .

This is a contradiction for sufficiently large x and the result follows.

515. Let n be a fixed positive integer exceeding 1. To any choice of n real numbers xi satisfying 0 ≤ xi ≤ 1,
we can associate the sum ∑

{|xi − xj | : 1 ≤ i < j ≤ n} .

What is the maximum possible value of this sum and for which values of the xi is it assumed?

Solution 1. Wolog, we may suppose that 1 ≥ x1 ≥ x2 ≥ · · · ≥ xn ≥ 0. Then the sum in question is
equal to∑

{xi − xj : 1 ≤ i < j ≤ n} = (n− 1)x1 + (n− 3)x2 + · · ·+ (n + 1− 2i)xi + · · · − (n− 1)xn ,

Since 0 ≤ xi ≤ 1 for each i, this sum is dominated by (n − 1) + (n − 3) + · · ·, where the sum is taken over
all the indices yielding positive coefficients and equality occurs when xi = 1 for these indices.

When n = 2m is even, this maximum sum is equal to (2m−1)+(2m−3)+ · · ·+3+1 = m2 = n2/4; we
can achieve it with x1 = · · · = xm = 1 and xm+1 = xm+2 = · · · = x2m = 0. When n = 2m + 1 is odd, this
maximum sum is equal to (2m) + (2m− 2) + · · ·+ 2 = 2(m + (m− 1) + · · ·+ 1) = m(m + 1) = (n2 − 1)/4;
it is achieved with x1 = x2 = · · · = xm = 1 and xm+2 = xm+3 = · · · = x2m+1 = 0 (the value of xm+1 being
immaterial).

In summary, the maximum sum can be rendered as bn2/4c.

Solution 2. We may assume that 1 ≥ x1 ≥ x2 ≥ · · · ≥ xn ≥ 0. For 1 ≤ i ≤ n − 1, let di = xi − xi+1,
so that |xi − xj | = xi − xj = di + di+1 + · · · + dj−1 when i < j. Suppose 1 ≤ p ≤ n is chosen so that
k(n− k) ≤ p(n− p) for each 1 ≤ k ≤ n.

Note that, in the given sum, each dk occurs in the expansion of terms of the form xi−xj where 1 ≤ i ≤ k
and k + 1 ≤ j ≤ n; there are k(n− k) such terms. Therefore

∑
{|xi − xj | : 1 ≤ i < j ≤ n} =

n−1∑
k=1

k(n− k)dk

≤ p(n− p)
n−1∑
k=1

dk ≤ p(n− p) .

with equality occurring if d1 = d2 = · · · = dp−1 = dp+1 = · · · = dn−1 = 0 and dp = xp − xp+1 = 1, i.e.
x1 = · · · = xp = 1 and xp+1 = · · · = xn = 0.

Since p(n−p)−k(n−k) = (p−k)(n−p−k) ≥ 0 for all k if and only if k ≤ p ≤ n−k or (n−k) ≤ p ≤ k
for all k, we see that p = n/2 when n is even and p = (n± 1)/2 when n is odd. This produces the answer in
Solution 1.

516. Let n ≥ 1. Is it true that, for any 2n + 1 positive real numbers x1, x2, · · · , x2n+1, we have that

x1x2

x3
+

x2x3

x4
+ · · ·+ x2n+1x1

x2
≥ x1 + x2 + · · ·+ x2n+1 ,

with equality if and only if all the xi are equal?
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Solution 1. Let n = 1. Then we have that

2
(

x1x2

x3
+

x2x3

x1
+

x3x1

x2

)
=

(
x1x2

x3
+

x2x3

x1

)
+

(
x2x3

x1
+

x3x1

x2

)
+

(
x3x1

x2
+

x1x2

x3

)
≥ 2x1 + 2x2 + 2x3 = 2(x1 + x2 + x3) ,

with equality if and only of x1 = x2 = x3, by the arithmetic-geometric means inequality. Thus, the inequality
holds for n = 1.

The inequality is not generally true for n ≥ 2. For each positive integer n, define the function

Ln(x1, x2, · · · , x2n+1) =
x1x2

x3
+

x2x3

x4
+ · · ·+ x2n+1x1

x2
.

Observe that

Ln+1(x1, x2, · · · , x2n+1, x1, x2) = Ln(x1, x2, · · · , x2n+1) +
x1x2

x1
+

x2x1

x2
= Ln(x1, x2, · · · , x2n+1) + x1 + x2 .

Thus, if we can determine (x1, x2, · · · , x2n+1) to contradict the inequality, then (x1, x2, · · · , x2n+1, x1, x2)
contradicts the inequality at the nest higher level. Accordingly, to prove our assertion, is suffices to find a
counterexample when n = 2.

Since
L2(90, 3, 9, 1, 1) = 30 + 27 + 9 + (1/90) + 30 < 97 < 90 + 3 + 9 + 1 + 1 ,

it follows that the inequality generally fails for n ≥ 2.

Solution 2. By the Cauchy-Schwarz Inequality, we have in the case n = 1,

(
x1x2

x3
+

x2x3

x1
+

x3x1

x2

)(
x1x3

x2
+

x2x1

x3
+

x3x2

x1

)
≥

(√
x2

1x2x3

x3x2
+

√
x2

2x3x1

x1x2
+

√
x2

3x1x2

x2x1

)2

= (x1 +x2 +x3)2 .

from which the desired inequality follows.

Suppose that n ≥ 2. Let x1 = 34, x2 = 3, x3 = 32, x4 = x5 = · · · = x2n+1 = 1, so that x1 + x2 + · · ·+
x2n+1 = 81 + 3 + 9 + (2n− 2) = 91 + 2n. Then

x1x2

x3
=

x2x3

x4
=

x2n+1x1

x2
= 33 ,

x3x4

x1
= 32 ,

x2nx2n+1

x1
=

1
34

,

and
xixi+1

xi+2
= 1 for i = 4, · · · , 2n− 1 .

(The last case is vacuous when n = 2.) The sum of the left side of the purported inequality is 3× 33 + 32 +
(1/34) + (2n − 4) < 81 + 9 + 1 + (2n − 4) = 87 + 2n. Thus, the left side is less than the right side and we
have a counterexample.

Comment. The case n = 1 was proven by W.P. Wen and the general counterexample is adapted from
one given by A. Remorov.

517. A man bought four items in a Seven-Eleven store. The clerk entered the four prices into a pocket
calculator and multiplied to get a result of 7.11 dollars. When the customer objected to this procedure,
the clerk realized that he should have added and redid the calculation. To his surprise, he again got the
answer 7.11. What did the four items cost?
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Solution. Let the cost in cents of the four items be a, b, c, d. Then a, b, c, d are whole numbers with
a + b + c + d = 711 = 32 × 79 and (

a

100

)(
b

100

)(
c

100

)(
d

100

)
=

711
100

.

so that abcd = 711× 106 = 26 × 32 × 56 × 79. Exactly one price (in cents) is a multiple of 79, and at most
three prices (in cents) are even or are a multiple of 5,

It is not possible for three prices to be a multiple of 25. Otherwise, the remaining price would be the
multiple of 79, and the sum of the three remaining prices would also be a multiple of 79 as well as of 25.
But 79× 25 > 711, and this is not possible. Hence, at least one of the prices is a multiple of 53 = 125; this
price is clearly not a multiple of 79.

Case 1: One of the prices is 5× 79 = 395. Suppose that a = 5× 79 = 395. Suppose that b is a multiple
of 53 = 125. Since not all four prices can be a multiple of 5, one price, c, say, must be a multiple of 52 = 25.

If (a, b) = (395, 125), then, modulo 25, a+ b+ c ≡ 20, so that d ≡ 11−20 ≡ 16. Since d can have only 2,
3, 5 as prime divisor, d = 16. But this leads to c = 175 = 7× 52, which is not possible. If (a, b) = (395, 250),
again d = 16 so that c = 50 = 2×2×52. But then abcd is not divisible by 3. Since a+b < 711, this exhausts
the possibilities and Case 1 cannot occur.

Case 2. One of the prices, say a is one of the multiples 79, 158, 231, 316, 474 of 79 and another, say b is
one of the multiples 125, 250, 375, 500, 625 of 125. Examining the cases and conducting an analysis similar
to that of Case 1, we arrive at the unique solution

(a, b, c, d) = (316, 125, 150, 120) = (22 × 79, 53, 2× 3× 52, 23 × 3× 5 .

Therefore the four items cost $1.20, $1.25, $1.50 and $3.16.

Comments. There are a couple of “near misses” where the product is off by a prime factor:
(45, 100, 250, 316) = (32 × 5, 22 × 52, 2× 53, 22 × 79) and (25, 120, 250, 316) = (52, 23 × 3× 5, 2× 53, 22 × 79).

AQ. Zhang had an interesting way to reject some cases. Suppose that a = 395 = 5 × 79. Then
b+c+d = 316 and bcd = 26×32×55. This gives an arithmetic mean for b, c, d less than 108 and a geometric
mean that satisfies

3
√

26 × 32 × 55 = 22 × 5× 3
√

9× 25 = 20× 3
√

225 > 20× 6 = 120 .

This is impossible by the arithmetic-geometric means ineqaulity. Similarly, of a = 375 = 3×53, the arithmetic
mean of b, c, d is 112, while the geometric mean is 20× 3

√
237 which exceeds 120. Again, this is not possible.

In general bcd = 106×711
a exceeds 106, so that the geometric mean of b, c, d is always at least 100. If

a > 411, the geometric mean is less than 100. Thus, we eliminate from consideration all multiples of 79
greater than 316 and all multiples of 125 greater than 250.

518. Let I be the incentre of triangle ABC, and let AI, BI, CI, produced, intersect the circumcircle of
triangle ABC at the respective points D, E, F . Prove that EF ⊥ AD.

Solution 1. Let α = 6 BAD = 6 CAD, β = 6 ABE = 6 CBE and γ = 6 ACF = 6 FCB. Suppose
that AI and EF intersect at G. Since 6 FAB = 6 FCB = γ and 6 AFE = 6 ABE = β, it follows that
6 AGE = 6 FAG + 6 AFG = α + γ + β = 90◦ and EF ⊥ AD.

Solution 2. Use the same notation as in Solution 1.

6 IGE = 6 IFG + 6 FIG = 6 CFE + 6 AIF = 6 CBE + 6 ACF + 6 IAC = β + γ + α = 90◦ .

Solution 3. Use the same notation as in Solution 1. A rotation with centre F and angle β carries ray
FE onto FC. A rotation with centre C and angle γ carries ray CF onto CA. A rotation with centre A and
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angle α carries AC onto AD. Since all of these rotation have the same sense and the sum of their angles is
90◦, it follows that the final position AD of the line EF is perpendicular to EF and the result follows.

Solution 4. Let U be the intersection of AB and CF , P of AB and FE, V of AC and BE and Q of
AC and FE. Since 6 CFE = 6 CBE = 6 EBA and 6 FUA = 6 BUI, triangles BIU and FPU are similar,
so that 6 BIU = 6 FPU . Similarly, triangles CIV and EQV are similar, and 6 CIV = 6 EQV . Hence, in
triangles APG and AQG,

6 APG = 6 FPU = 6 BIU = 6 CIV = 6 EQV = 6 AQG .

Also, 6 PAG = 6 QAG. Therefore, 6 AGP = 6 AGQ, and the result follows since P,G, Q are collinear.

519. Let AB be a diameter of a circle and X any point other than A and B on the circumference of the
circle. Let tA, tB and tX be the tangents to the circle at the respective points A, B and X. Suppose
that AX meets tB at Z and BX meets tA at Y . Show that the three lines Y Z, tX and AB are either
concurrent (ı.e. passing through a common point) or parallel.

Solution. Let tX intersect tA and tB in U and V respectively, and let O be the centre of the circle. If
X is the midpoint of the arc AB, then tX is parallel to AB and the reflection in the diameter of the circle
passing through X interchanges A and B, U and V , as well as Y and Z. Hence AB, UV = tX and Y Z,
being perpendicular to the diameter, are all parallel.

Henceforth, suppose, say, that X is closer to A than to B. Let α = 6 XAB and β = 6 XBA. Then, by
standard results on isoceles triangles and subtended angles, we have that

α = 6 XAB = 6 AXO = 6 AY B = 6 UXY = 6 V BY = 6 V XB

and
β = 6 XBA = 6 OXB = 6 AXU = 6 UAX = 6 BZX = 6 ZXV ;

also Y U = UX = UA and ZV = XV = BV .

Thus, U and V are the respective midpoints of AY and BZ. Let BA and ZY intersect at W . Since
AY ‖BZ, the dilatation with factor |WB|/|WA| and centre W takes A to B, Y to Z, and the midpoint U
of AY to the midpoint V of BZ. Hence W , U and V are collinear and the result follows.

520. The diameter of a plane figure is the largest distance between any pair of points in the figure. Given an
equilateral triangle of side 1, show how, by a stright cut, one can get two pieces that can be rearranged
to form a figure with maximum diameter

(a) if the resulting figure is convex (i.e. the line segment joining any two of its points must lie inside
the figure);

(b) if the resulting figure is not necessarily convex, but it is connected (i.e. any two points in the figure
can be connected by a curve lying inside the figure).

Solution. (a) The maximum diameter is
√

13/2.

We first observe that for a convex polygon, the diameter is realized by joining some two of its vertices.
To see this, let PQ be any segment contained within the figure and draw two lines l and m perpendicular
to PQ through P and Q respectively. Move l in the direction −−→

QP to the last position for which it has a
nonvoid intersection with the polygon; this intersection must contain a vertex U (it consists of either a side
or a vertex of the polygon). Similarly, move m in the direction −−→

PQ until it contains a vertex V . Then the
distance between U and V must be at least as great as the distance between the lines l and m, which is at
least as great as the distance between P and Q.

In cutting the equilateral triangle ABC, there are two possibilities. Either the cut passes through a
vertex A and an interior point D of the opposite side BC. Or it passes through an interior point E of a side
AB and an interior point F of a side AC.
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Suppose first that the cut is AD, through a vertex. For a convex result, we must place triangle ABD
against triangle ADC so that one side of one triangle lies along an equal side of the other. There are generally
three ways to do this.

(i) Turn ABD over so that A falls on D and D falls on A. Let B fall on U . The diameter of ACDU
is equal to the maximum length of the four sides and two diagonals. The lengths of four sides and of the
diagonal AD do not exceed 1.

|CU | ≤ |CA|+ |AU | = |CA|+ |DB|

and
|CU | ≤ |CD|+ |DU | = |CD|+ |AB| .

Hence
|CU | ≤ 1 + min (|DB|, |CD|) ≤ 3

2
. The diameter of this figure does not exceed 3/2.

(ii) Move triangle ABD so that A stays put, B falls on C and D goes to a point V (this is a rotation
about A). Since |DV | ≤ |DC| + |CV | = |DC| + |BD|, it can be seen that the diameter of this figure does
not exceed 1.

(iii) Move triangle ABD so that A falls on C, B falls on A and D falls on W . Since |DW | does not
exceed the minimum of |AD|+ |AW | = |AD|+ |BD| and |CW |+ |DC| = |AD|+ |DC|, we can deduce that
the diameter does not exceed 3/2.

In the case that D is the midpoint of BC, there are two additional possibilities.

(iv) Place triangle ABD alongside triangle ACD that they have the side CD in common to get an
obtuse isosceles triangle whose longest side has length

√
3.

(v) Finally place triangle ABD alongside triangle ACD so that B falls on D and D falls on C to get
a 150◦, 30◦ parallellogram with side lengths 1 and

√
3/2. By the law of cosines, the length of the longer

diagonal of this parallelogram is the square root of

1 +
3
4
−
√

3 cos 150◦ = 1 +
3
4

+
3
2

=
13
4

,

so that the diameter of this figure turns out to be
√

13/2. Note that this exceeds
√

3.

Consider the second possibility in which the cut EF joins a point E in AB to a point F in AC. A side
of the triangle AFE must be placed against an equal side of the quadrilateral BCFE. No side of triangle
AFE can be placed against BC, since BC is longer than any chord of triangle ABC except sides AB and
AC. The equality of FE with either AE or AF occurs exactly when EF‖BC and E and F are the respective
midpoints of the sides.

We might consider turning triangle AFE over so that E and F are interchanged. If one of the angles,
say 6 AFE, exceeds the other, 6 AEF , then 6 BEF + 6 AFE > 6 BEF + 6 AEF = 180◦ and we would not
get a convex figure. If the two angles 6 AEF and 6 AFE are equal, then we get triangle ABC with diameter
1. Thus, we find that there are essentially six cases.

(i) Suppose that |EF | = |FC| = x and that triangle AEF is moved so that E falls on F , F falls on C
and A falls on P . Let y = |AE| = |FP |. This gives a pentagon BCPFE whose respective side lengths are
1, 1− x, y, x, 1− y, none of which exceeds 1. The three diagonals that lie within triangle ABC have length
less than 1. Since both angles EBP and EPB are less than 60◦, BEP is the largest angle of triangle BEP
and so |EP | < |BP |. Finally,

|BP | < |BE|+ |EF |+ |FP | = (1− y) + x + y = 1 + x

and
|BP | < |BC|+ |CP | = 1 + (1− x) = 2− x ,
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it follows that |BP | is less than the minimum of 1 + x and 2 − x, which cannot exceed 3/2. Thus, the
diameter of BCPFE is less than 3/2.

(ii) Suppose that |EF | = |FC| = x and triangle AEF is moved so that F stays put, E falls on C and A
falls on Q. With y = |AE| = |QC|, we get a pentagon BCQFE with respective side lengths 1, y, 1−x, x, 1−y.
We find that

|BQ| < min (1 + y, (1− y) + x + (1− x)) = min (1 + y, 2− y) < 3/2

and that all other sides and diagonals of the pentagon do not exceed 1. Hence the diameter is less than 3/2.

(iii) Suppose that |AE| = |FC| = x, so that |AF | = 1− x. Let triangle AEF be moved so that A falls
on C, E falls on F and F falls on R. Let y = |EF | = |FR|. The side lengths of pentagon BCRFE are
respectively 1, 1− x, y, y, 1− x. Since |AE| > |AF |, x > 1/2. We have that

|ER| < |BR| < |BC|+ |RC| = 2− x < 3/2

and so the diameter of the pentagon must be less than 3/2.

(iv) Suppose that |AE| = |FC| = x and that triangle AEF is moved so that A falls on F , E falls on C
and F falls on S. Using the Law of Cosines on triangle AEF , we have that y =

√
3x2 − 3x + 1. Then

|BS| ≤ |BE|+ |EF |+ |FS| = 2(1− x) +
√

3x2 − 3x + 1 .

Since x ≥ 1/2, we have that

(4x2 − 2x + (1/4))− (3x2 − 3x + 1) = x2 + x− (3/4) = (1/4)(2x− 1)(2x + 3) > 0 .

Hence √
3x2 − 3x + 1 <

√
4x2 − 2x + (1/4) = 2x− (1/2) = (3/2)− 2(1− x) .

Therefore |BS| < 3/2. Thus, the diameter of the figure obtained is less than 3/2.

(v) Suppose that |AF | = |FC| (so that F is the midpoint of AC) and that triangle AEF is moved so
that F is left in place, A falls on C and E falls on T . Then we get a quadrilateral BCTE and find that

|BT | ≤ |BF |+ |FT | ≤ 2|BF | =
√

3 .

Thus, the diameter does not exceed
√

3.

(vi) Suppose that |AF | = |FC| and that triangle AEF is moved so that A falls on F , F falls on C and
E falls on U . Let H be on FU produced so that HC ⊥ AC. Since |FC| = 1/2 and 6 CFH = 60◦, BCHF is
a 150◦, 30◦ parallelogram with side lengths 1 and

√
3/2, so that |BU | < |BH| =

√
13/2. Thus the diameter

of BCUFE does not exceed
√

13/2.

Therefore, the maximum diameter of the convex figure formed by the two pieces is
√

13/2.

(b) The diameter of the resulting figure cannot exceed the sum of the diameters of the pieces, and so is
at most 2. To get a figure of diameter 2, cut the equilateral triangle into two right triangles by a median,
and line them up to have their hypotenuses collinear with only one point in common.
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