PROBLEMS FOR DECEMBER

Please send your solutions to
Mr. Rosu Mihai
54 Judith Crescent
Brampton, ON L6S 3J4
no later than January 5, 2008. Electronic files can be sent to rosumihai@yahoo.ca. However, please do not send scanned files; they use a lot of computer space, are often indistinct and can be difficult to download. It is important that your complete mailing address and your email address appear legibly on the front page. If you do not write your family name last, please underline it.
584. Let n be an integer exceeding 2 and suppose that $x_{1}, x_{2}, \cdots, x_{n}$ are real numbers for which $\sum_{i=1}^{n} x_{i}=0$ and $\sum_{i=1}^{n} x_{i}^{2}=n$. Prove that there are two numbers among the x_{i} whose product does not exceed -1 .
585. Calculate the number

$$
a=\lfloor\sqrt{n-1}+\sqrt{n}+\sqrt{n+1}\rfloor^{2},
$$

where $\lfloor x\rfloor$ denotes the largest integer than does not exceed x and n is a positive integer exceeding 1 .
586. The function defined on the set \mathbf{C}^{*} of all nonzero complex numbers satisfies the equation

$$
f(z) f(i z)=z^{2}
$$

for all $z \in \mathbf{C}^{*}$. Prove that the function $f(z)$ is odd, $i, e ., f(-z)=-f(z)$ for all $z \in \mathbf{C}^{*}$. Give an example of a function that satisfies this condition.
587. Solve the equation

$$
\tan 2 x \tan \left(2 x+\frac{\pi}{3}\right) \tan \left(2 x+\frac{2 \pi}{3}\right)=\sqrt{3} .
$$

588. Let the function $f(x)$ be defined for $0 \leq x \leq \pi / 3$ by

$$
f(x)=\sec \left(\frac{\pi}{6}-x\right)+\sec \left(\frac{\pi}{6}+x\right)
$$

Determine the set of values (its image or range) assumed by the function.
589. In a circle, A is a variable point and B and C are fixed points. The internal bisector of the angle $B A C$ intersects the circle at D and the line $B C$ at G; the external bisector of the angle $B A C$ intersects the circle at E and the line $B C$ at F. Find the locus of the intersection of the lines $D F$ and $E G$.
590. Let $S A B C$ be a regular tetrahedron. The points M, N, P belong to the edges $S A, S B$ and $S C$ respectively such that $M N=N P=P M$. Prove that the planes $M N P$ and $A B C$ are parallel.

