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563. (a) Determine infinitely many triples (a, b, c) of integers for which a, b, c are not in arithmetic progression
and ab + 1, bc + 1, ca + 1 are all squares.

(b) Determine infinitely many triples (a, b, c) of integers for which a, b, c are in arithemetic progression
and ab + 1, bc + 1, ca + 1 are all squares.

(c) Determine infinitely many triples (u, v, w) of integers for which uv−1, vw−1, wu−1 are all squares.
(Can it be arranged that u, v, w are in arithmetic progression?)

564. Let x1 = 2 and

xn+1 =
2xn

3
+

1
3xn

for n ≥ 1. Prove that, for all n > 1, 1 < xn < 2.

565. Let ABC be an acute-angled triangle. Points A1 and A2 are located on side BC so that the four points
are ordered B,A1, A2, C; similarly B1 and B2 are on CA in the order C,B1, B2, A and C1 and C2 on
side AB in order A,C1, C2, B. All the angles AA1A2, AA2A1, BB1B2, BB2B1, CC1C2, CC2C1 are
equal to θ. Let T1 be the triangle bounded by the lines AA1, BB1, CC1 and T2 the triangle bounded
by the lines AA2, BB2, CC2. Prove that all six vertices of the triangles are concyclic.

566. A deck of cards numbered 1 to n (one card for each number) is arranged in random order and placed
on the table. If the card numbered k is on top, remove the kth card counted from the top and place it
on top of the pile, not otherwise disturbing the order of the cards. Repeat the process. Prove that the
card numbered 1 will eventually come to the top, and determine the maximum number of moves that
is required to achieve this.

567. (a) Let A,B, C, D be four distinct points in a straight line. For any points X, Y on the line, let XY
denote the directed distance between them. In other words, a positive direction is selected on the line
and XY = ±|XY | according as the direction X to Y is positive or negative. Define

(AC,BD) =
AB/BC

AD/DC
=

AB × CD

BC ×DA
.

Prove that (AB,CD) + (AC,BD) = 1.

(b) In the situation of (a), suppose in addition that (AC,BD) = −1. Prove that

1
AC

=
1
2

(
1

AB
+

1
AD

)
,

and that
OC2 = OB ×OD ,
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where O is the midpoint of AC. Deduce from the latter that, if Q is the midpoint of BD and if the
circles on diameters AC and BD intersect at P , 6 OPQ = 90◦.

(c) Suppose that A,B, C, D are four distinct on one line and that P,Q,R, S are four distinct points
on a second line. Suppose that AP , BQ, CR and DS all intersect in a common point V . Prove that
(AC,BD) = (PR,QS).

(d) Suppose that ABQP is a quadrilateral in the plane with no two sides parallel. Let AQ and BP
intersect in U , and let AP and BQ intersect in V . Suppose that V U and PQ produced meet AB at C
and D respectively, and that V U meets PQ at W . Prove that

(AB,CD) = (PQ, WD) = −1 .

568. Let ABC be a triangle and the point D on AB be the foot of the altitude AD from A. Suppose that
H lies on the segment AD and that BH and CH intersect AC and AB at E and F respectively.

Prove that 6 FDH = 6 HDE.

569. Let A,W, B, U, C, V be six points in this order on a circle such that AU , BV and CW all intersect in
the common point P at angles of 60◦. Prove that

|PA|+ |PB|+ |PC| = |PU |+ |PV |+ |PW | .
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