## Solutions for December

584. Let $n$ be an integer exceeding 2 and suppose that $x_{1}, x_{2}, \cdots, x_{n}$ are real numbers for which $\sum_{i=1}^{n} x_{i}=0$ and $\sum_{i=1}^{n} x_{i}^{2}=n$. Prove that there are two numbers among the $x_{i}$ whose product does not exceed -1 .

Solution. We can supppose that the $x_{i}$ are ordered in increasing sequence and that there is a positive integer $k$ with $x_{1} \leq x_{2} \leq \cdots \leq x_{k} \leq 0 \leq x_{k+1} \leq \cdots \leq x_{n}$. Then, noting that $-x_{1} \geq 0$, we have that

$$
\sum_{i=1}^{k} x_{i}^{2} \leq \sum_{i=1}^{k} x_{1} x_{i}=-x_{1}\left(x_{k+1}+x_{k+2}+\cdots+x_{n}\right) \leq-(n-k) x_{1} x_{n}
$$

and

$$
\sum_{i=k+1}^{n} x_{i}^{2} \leq \sum_{i=k+1}^{n} x_{n} x_{i}=-x_{n}\left(x_{1}+x_{2}+\cdots+x_{k}\right) \leq-k x_{1} x_{n}
$$

Finally, $n=\sum_{i=1}^{n} x_{i}^{2} \leq-n x_{1} x_{n}$; thus $x_{1} x_{n} \leq-1$.
585. Calculate the number

$$
a=\lfloor\sqrt{n-1}+\sqrt{n}+\sqrt{n+1}\rfloor^{2},
$$

where $\lfloor x\rfloor$ denotes the largest integer than does not exceed $x$ and $n$ is a positive integer exceeding 1 .
Solution. It does not appear that there is a neat expression for this. One can obtain without too much trouble the inequality

$$
3 \sqrt{n-1}<\sqrt{n-1}+\sqrt{n}+\sqrt{n+1}<3 \sqrt{n}
$$

from which we can find that when $k^{2}+1 \leq n \leq k^{2}+(2 k / 3)$, then $\sqrt{a}=3 k$, when $k^{2}+(2 k / 3)+(10 / 9)<$ $n \leq k^{2}+(4 k / 3)+(1 / 3)$, then $\sqrt{a}=3 k+1$, and when $k^{2}+4 k+(13 / 9)<n \leq(k+1)^{2}$, then $\sqrt{a}=3 k+2$. However, this leaves the difficulty of getting the right expression for the gaps between the various ranges of $n$.
586. The function defined on the set $\mathbf{C}^{*}$ of all nonzero complex numbers satisfies the equation

$$
f(z) f(i z)=z^{2}
$$

for all $z \in \mathbf{C}^{*}$. Prove that the function $f(z)$ is odd, $i, e ., f(-z)=-f(z)$ for all $z \in \mathbf{C}^{*}$. Give an example of a function that satisfies this condition.

Solution. Note that $f(z) \neq 0$ for all $x \in \mathbf{C}^{*}$. Replacing $z$ by $i z$ leads to $f(i z) f(-z)=-z^{2}$, from which we have that

$$
f(z) f(i z)+f(i z) f(-z)=0 \Longrightarrow f(z)+f(-z)=0 .
$$

Therefore the function is odd.
An example is given by $f(z)=(-1+i) z / \sqrt{2}$.
587. Solve the equation

$$
\tan 2 x \tan \left(2 x+\frac{\pi}{3}\right) \tan \left(2 x+\frac{2 \pi}{3}\right)=\sqrt{3} .
$$

Solution. Using the standard trigonometric identities for $\sin A \sin B, \cos A \cos B, \cos 2 A$ and $\sin 2 A$, we
have that

$$
\begin{aligned}
\sqrt{3} & =\tan 2 x\left(\frac{\sin (2 x+(\pi / 3)) \sin (2 x+(2 \pi / 3))}{\cos (2 x+(\pi / 3)) \cos (2 x+(2 \pi / 3))}\right) \\
& =\tan 2 x\left(\frac{\cos (\pi / 3)-\cos (4 x+\pi)}{\cos (\pi / 3)+\cos (4 x+\pi)}\right) \\
& =\tan 2 x\left(\frac{1+2 \cos 4 x}{1-2 \cos 4 x}\right)=\tan 2 x\left(\frac{1+2\left(2 \cos ^{2} 2 x-1\right)}{1-2\left(1-2 \sin ^{2} 2 x\right)}\right) \\
& =\left(\frac{\sin 2 x}{\cos 2 x}\right)\left(\frac{4 \cos ^{2} 2 x-1}{4 \sin ^{2} 2 x-1}\right)=\frac{2 \sin 4 x \cos 2 x-\sin 2 x}{2 \sin 4 x \sin 2 x-\cos 2 x} \\
& =\frac{\sin 6 x+\sin 2 x-\sin 2 x}{\cos 2 x-\cos 6 x-\cos 2 x}=\frac{\sin 6 x}{-\cos 6 x}=-\tan 6 x .
\end{aligned}
$$

Therefore $x=-10^{\circ}+k \cdot 30^{\circ}$ for some integer $k$.
588. Let the function $f(x)$ be defined for $0 \leq x \leq \pi / 3$ by

$$
f(x)=\sec \left(\frac{\pi}{6}-x\right)+\sec \left(\frac{\pi}{6}+x\right)
$$

Determine the set of values (its image or range) assumed by the function.
Solution. Making use of the inequality $(1 / a)+(1 / b) \geq 2 / \sqrt{a b}$ for $a, b>0$, we find that

$$
f(x) \geq \frac{2}{\sqrt{\cos ((\pi / 6)-x) \cos ((\pi / 6)+x)}} \geq \frac{2}{\sqrt{(1 / 4)+((\cos 2 x) / 2)}}
$$

Since $0 \leq x \leq \pi / 3$ implies that $-\frac{1}{2} \leq \cos 2 x \leq 1$, it follows that

$$
0 \leq \sqrt{\frac{1}{4}+\frac{\cos 2 x}{2}} \leq \frac{\sqrt{3}}{2}
$$

and

$$
f(x) \geq \frac{4}{\sqrt{3}}
$$

Since $f(x)$ is continuous, $f(0)=4 / \sqrt{3}$ and $f(x)$ grows without bound when $x$ approaches $\pi / 3$, the image of $f$ on $[0, \pi / 3)$ is $[4 / \sqrt{3} . \infty)$.
589. In a circle, $A$ is a variable point and $B$ and $C$ are fixed points. The internal bisector of the angle $B A C$ intersects the circle at $D$ and the line $B C$ at $G$; the external bisector of the angle $B A C$ intersects the circle at $E$ and the line $B C$ at $F$. Find the locus of the intersection of the lines $D F$ and $E G$.

Solution. Suppose without loss of generality that $A B>A C$. If $M$ is the midpoint of $B C$, since $B G: G C=A B: A C, B G>G C$ so that $G$ lies between $M$ and $C$ and $A$ lies between $E$ and $F$. Let $P$ be the intersection of $D F$ and $E G$.

Observe that $D$ is the midpoint of the arc $B C$ and that $A D \perp E F$. Therefore $D A$ is an altitude of triangle $D E F$ and $D E$ is a diameter of the circle. Therefore $D E$ must pass through $M$, and so $F M \perp D E$, i.e., $F M$ is an altitude of triangle $D E F$. The intersection of these two altitudes, $G$, is the orthocentre of triangle $A B C$ and so $E G \perp D F$. Thus, $\angle E P D=90^{\circ}$, so that $P$ must lie on the given circle.

Conversely, let $P$ be a point on the given circle. Wolog, we may assume that $P$ lies between $D$, the midpoint of arc $B C$ and $C$. Let $D E$ be the diameter of the circle that right bisects $B C$. Suppose that $D P$ produced intersects $B C$ produced at $F$ and that $E F$ intersects the circle at $A$. This is the point $A$ that produced the point $P$ as described in the problem. Thus, the locus is indeed the given circle with the exception of the points $B$ and $C$.
590. Let $S A B C$ be a regular tetrahedron. The points $M, N, P$ belong to the edges $S A, S B$ and $S C$ respectively such that $M N=N P=P M$. Prove that the planes $M N P$ and $A B C$ are parallel.

Solution. Let $|S M|=a,|S N|=b$ and $|S P|=c$. From the Law of Cosines, we have that $|M N|^{2}=$ $a^{2}+b^{2}-a b$, etc., whence $a^{2}+b^{2}-a b=b^{2}+c^{2}-b c=c^{2}+a^{2}-a c=0$. This implies that $a=b=c$ [prove it], so that $S M: S A=S N: S B=S P: S C$ and the result follows.

