Solutions for January

528. Let the sequence $\left\{x_{n}: n=0,1,2, \cdots\right\}$ be defined by $x_{0}=a$ and $x_{1}=b$, where a and b are real numbers, and by

$$
7 x_{n}=5 x_{n-1}+2 x_{n-2}
$$

for $n \geq 2$. Derive a formula for x_{n} as a function of a, b and n.
Solution. This can be done by the standard theory of solving linear recursions. The auxiliary equation is $7 t^{2}-5 t-2=0$, with roots 1 and $-2 / 7$. Trying a solution of the form $x_{n}=A \cdot 1^{n}+B(-2 / 7)^{n}$ and plugging in the initial conditions leads to $A+B=a$ and $A-(2 / 7) B=b$ and the solution

$$
x_{n}=\frac{2 a+7 b}{9}+\frac{7(a-b)}{9} \cdot\left(-\frac{2}{7}\right)^{n}
$$

529. Let k, n be positive integers. Define $p_{n, 1}=1$ for all n and $p_{n, k}=0$ for $k \geq n+1$. For $2 \leq k \leq n$, we define inductively

$$
p_{n, k}=k\left(p_{n-1, k-1}+p_{n-1, k}\right) .
$$

Prove, by mathematical induction, that

$$
p_{n, k}=\sum_{r=0}^{k-1}\binom{k}{r}(-1)^{r}(k-r)^{n}
$$

Solution. Let

$$
q_{n, k}=\sum_{r=0}^{k-1}\binom{k}{r}(-1)^{r}(k-r)^{n}
$$

When $n=1$, we have that $q_{1,1}=\binom{1}{0} 1=1$ and, for $k \geq 2$,

$$
q_{1, k}=\sum_{r=0}^{k-1}\binom{k}{r}(-1)^{r} k-\sum_{r=0}^{k-1}\binom{k}{r}(-1)^{r} r=k\left[(1-1)^{k}-(-1)^{k}\right]+k\left[(1-1)^{k-1}-(-1)^{k-1}\right]=0 .
$$

Also $q_{n, 1}=\binom{1}{0} 1^{n}=1$ for $n \geq 1$. When $(n, k)=(2,2)$, we have that $q_{2,2}=\binom{2}{0} 2^{2}-\binom{2}{1} 1=2$ and $p_{2,2}=2(1+0)=2$. When $n=2$ and $k \geq 3$, then

$$
\begin{aligned}
q_{2, k} & =\sum_{r=0}^{k-1}\binom{k}{r}(-1)^{r}(k-r)^{2} \\
& =\sum_{r=0}^{k-1}\binom{k}{r}(-1)^{r}\left[k^{2}-(2 k-1) r+r(r-1)\right] \\
& =k^{2} \sum_{r=0}^{k-1}\binom{k}{r}(-1)^{r}+(2 k-1) k \sum_{r=0}^{k-1}\binom{k-1}{r-1}(-1)^{r-1}+k(k-1) \sum_{r=0}^{k-1}\binom{k-2}{r-2}(-1)^{r-2} \\
& =(-1)^{k-1} k^{2}+(2 k-1) k(-1)^{k-2}+k(k-1)(-1)^{k-3} \\
& =(-1)^{k-3}\left[k^{2}-2 k^{2}+k+k^{2}-k\right]=0 .
\end{aligned}
$$

Thus, we have that $p_{n, k}=q_{n, k}$ for all n and $k=1$ as well as for $n=1,2$ and all k.

The remainder of the argument can be done by induction. Suppose that $n \geq 2$ and that $k \geq 2$ and that it has been shown that $p_{n, k}=q_{n, k}$ and $p_{n, k-1}=q_{n, k-1}$. Then

$$
\begin{aligned}
p_{n+1, k} & =k\left(p_{n, k}+p_{n, k-1}\right) \\
& =k\left[\sum_{r=0}^{k-1}\binom{k}{r}(-1)^{r}(k-r)^{n}+\sum_{r=0}^{k-2}\binom{k-1}{r}(-1)^{r}(k-1-r)^{n}\right] \\
& =k\left[k^{n}+\sum_{r=1}^{k-1}\binom{k}{r}(-1)^{r}(k-r)^{n}+\sum_{r=1}^{k-1}\binom{k-1}{r-1}(-1)^{r-1}(k-r)^{n}\right] \\
& =k\left[k^{n}+\sum_{r=1}^{k-1}\left[\binom{k}{r}-\binom{k-1}{r-1}\right](-1)^{r}(k-r)^{n}\right] \\
& =k^{n+1}+k \sum_{r=1}^{k-1}\binom{k-1}{r}(-1)^{r}(k-r)^{n} \\
& =k^{n+1}+\sum_{r=1}^{k-1}\binom{k}{r}(-1)^{r}(k-r)^{n+1} \\
& =\sum_{r=0}^{k-1}\binom{k}{r}(-1)^{r}(k-r)^{n+1}=q_{n+1, k},
\end{aligned}
$$

as desired.
530. Let $\left\{x_{1}, x_{2}, x_{3}, \cdots, x_{n}, \cdots\right\}$ be a sequence is distinct positive real numbers. Prove that this sequence is a geometric progression if and only if

$$
\frac{x_{1}}{x_{2}} \sum_{k=1}^{n-1} \frac{x_{n}^{2}}{x_{k} x_{k+1}}=\frac{x_{n}^{2}-x_{1}^{2}}{x_{2}^{2}-x_{1}^{2}}
$$

for all $n \geq 2$.
Solution. Necessity. Suppose that $x_{k}=a r^{k-1}$ for some numbers a and r. Then

$$
\begin{aligned}
\frac{x_{1}}{x_{2}} \sum_{k=1}^{n-1} \frac{x_{n}^{2}}{x_{k} x_{k+1}} & =\frac{r^{2(n-1)}}{r} \sum_{k=1}^{n-1} \frac{1}{r^{2 k-1}} \\
& =\left(r^{2 n-3}\right)\left(\frac{1}{r}+\frac{1}{r^{3}}+\cdots+\frac{1}{r^{2 n-3}}\right) \\
& =1+r^{2}+\cdots+r^{2(n-2)}=\frac{r^{2(n-1)}-1}{r^{2}-1}=\frac{x_{n}^{2}-x_{1}^{2}}{x_{2}^{2}-x_{1}^{2}}
\end{aligned}
$$

Sufficiency. Suppose that the equations of the problem holds. When $n=2$, both sides of the equation are equal to 1 regardless of the sequence. When $n=3$, the equation is equivalent to

$$
\frac{x_{1} x_{3}^{2}}{x_{1} x_{2}^{2} x_{3}}\left(x_{3}+x_{1}\right)=\frac{\left(x_{3}-x_{1}\right)\left(x_{3}+x_{1}\right)}{x_{3}^{2}-x_{1}^{2}}
$$

Since $x_{3}+x_{1} \neq 0$ [why?], we can divide out this factor and multiply up the denominators to get the equivalent

$$
x_{3}\left(x_{2}^{2}-x_{1}^{2}\right)=x_{2}^{2}\left(x_{3}-x_{1}\right) \Longleftrightarrow x_{3} x_{1}^{2}=x_{2}^{2} x_{1} \Longleftrightarrow x_{1} x_{3}=x_{2}^{2}
$$

whence x_{1}, x_{2}, x_{3} are in geometric progression.

Suppose, as an induction hypothesis, for $n \geq 4$ we know that $x_{k}=a r^{k-1}$ for suitable a and r and $k=1,2, \cdots, n-1$. Let $x_{n}=a u_{n}$ for some number u_{n}.

Then

$$
\begin{gathered}
\frac{u_{n}^{2}}{r}\left(\frac{1}{r}+\frac{1}{r^{3}}+\cdots+\frac{1}{r^{2 n-5}}+\frac{1}{r^{n-2} u_{n}}\right)=\frac{u_{n}^{2}-1}{r^{2}-1} \\
\Longleftrightarrow\left[u_{n}^{2}\left(1+r^{2}+r^{4}+\cdots+r^{2 n-6}\right)+r^{n-3} u_{n}\right]\left(r^{2}-1\right)=\left(u_{n}^{2}-1\right)\left(r^{2 n-4}\right) \\
\Longleftrightarrow\left(r^{2 n-4}-1\right) u_{n}^{2}+\left(r^{n-3} r^{2}-r^{n-3}\right) u_{n}=\left(r^{2 n-4}\right) u_{n}^{2}-r^{2 n-4} \\
\Longleftrightarrow 0=u_{n}^{2}-\left(r^{n-1}-r^{n-3}\right) u_{n}-r^{2 n-4}=\left(u_{n}-r^{n-1}\right)\left(u_{n}+r^{n-3}\right) .
\end{gathered}
$$

The case $u_{n}=-r^{n-3}$ is rejected because of the condition that the sequence consists of positive terms. Hence $u_{n}=r^{n-1}$, as desired. The result follows.

Comment. In the absence of the positivity contiion, the second root of the quadratic can be used. For example, the finite sequences $\left\{1, r, r^{2},-r, 1\right\}$ and $\left\{1, r, r^{2},-r,-r^{2}\right\}$ both satisfies the equations for $2 \leq n \leq 5$. It would be interesting to investigate the situation further.
531. Show that the remainder of the polynomial

$$
p(x)=x^{2007}+2 x^{2006}+3 x^{2005}+4 x^{2004}+\cdots+2005 x^{3}+2006 x^{2}+2007 x+2008
$$

is the same upon division by $x(x+1)$ as upon division by $x(x+1)^{2}$.
Solution 1. We have that

$$
\begin{aligned}
& p(x)=\left(x^{2007}+2 x^{2006}+x^{2005}\right)+2\left(x^{2005}+2 x^{2004}+x^{2003}\right)+3\left(x^{2003}+\right. \\
&\left.2 x^{2002}+x^{2001}\right)+\cdots+1003\left(x^{3}+2 x^{2}+x\right)+1004 x+2008 \\
&=x(x+1)^{2}\left(x^{2004}+2 x^{2002}+3 x^{2000}+\cdots+1003\right)+(1004 x+2008)
\end{aligned}
$$

from which the result follows with remainder $1004 x+2008$.
532. The angle bisectors $B D$ and $C E$ of triangle $A B C$ meet $A C$ and $A B$ at D and E respectively and meet at I. If $[A B D]=[A C E]$, prove that $A I \perp E D$. Is the converse true?

Solution. Observe that

$$
[A D B]:[C B D]=A D: D C=A B: B C
$$

and that

$$
[A C E]:[B C E]=A E: E B=A C: B C
$$

Now

$$
\begin{aligned}
{[A B D]=[A C E] } & \Longleftrightarrow[D B C]=[A B C]-[A B D]=[A B C]-[A C E]=[E B C] \\
& \Longleftrightarrow E D \| B C \Longleftrightarrow A E: E B=A D: D C \\
& \Longleftrightarrow A B: B C=A C: B C \Longleftrightarrow A B=B C \\
& \Longleftrightarrow A I \perp B C
\end{aligned}
$$

Both the result and the converse is true. If $[A B D]=[A C E]$, the foregoing chain of implications can be read in the forward direction to deduce that $A I \perp E D$. Note that $A I$ bisects angle A in triangle $A E D$. Thus, if $A I \perp E D$, then it follows that triangle $A E D$ is isosceles with $A E=A D$. Then $A E: D C=$ $A D: D C=A B: B C$ and $A E: E B=A C: B C$, whence $D C \cdot A B=A E \cdot B C=E B \cdot A C$. Therefore $D C \cdot(A E+E B)=E B \cdot(A D+C D)$, so that $D C \cdot A E=E B \cdot A D$ and $D C=E B$. Therefore $A B=A C$ and, following the foregoing implication in the backwards direction, we find that $[A B D]=[A C E]$.
533. Prove that the number

$$
\left.1+\lfloor(5+\sqrt{17}))^{2008}\right\rfloor
$$

is divisible by 2^{2008}.
Solution. Let $a=5+\sqrt{17}$ and $b=5-\sqrt{17}$, so that $a+b=10$ and $a b=8$. Define $x_{n}=a^{n}+b^{n}$. Then $x_{1}=10, x_{2}=(a+b)^{2}-2 a b=96$ and

$$
\begin{aligned}
x_{n+2} & =a^{n+2}+b^{n+2}=(a+b)\left(a^{n+1}+b^{n+1}\right)-a b\left(a^{n}+b^{n}\right) \\
& =10 x_{n+1}-8 x_{n}
\end{aligned}
$$

for $n \geq 0$. Note that x_{1} is divisible by 2 and x_{2} by 4 . Suppose, as an induction hypothesis, that $x_{n}=2^{n} u$ and $x_{n+1}=2^{n+1} v$, for some $k \geq 0$ and integers u and v. Then

$$
x_{n+2}=5 \cdot 2^{n+2}-2^{n+3}=3 \cdot 2^{n+2}
$$

Hence, for all positive integers $n, 2^{n}$ divides x_{n}.
Observe that $(5-\sqrt{17})^{n}=b^{n}<1$ for each positive integer n and that $a^{n}+b^{n}$ is a positive integer. Therefore $x_{n}=a^{n}+b^{n}>a^{n}>a^{n}+b^{n}-1=x_{n}-1$, whence $x_{n}=1+\left\lfloor a^{n}\right\rfloor$ and the result follows.
534. Let $\left\{x_{n}: n=1,2, \cdots\right\}$ be a sequence of distinct positive integers, with $x_{1}=a$. Suppose that

$$
2 \sum_{k=1}^{n} \sqrt{x_{i}}=(n+1) \sqrt{x_{n}}
$$

for $n \geq 2$. Determine $\sum_{k=1}^{n} x_{k}$.
Solution. When $n=2,2\left(\sqrt{x_{1}}+\sqrt{x_{2}}\right)=3 \sqrt{x_{2}}$, whence $\sqrt{x_{2}}=2 \sqrt{x_{1}}$ and $x^{2}=4 x_{1}=4 a$. When $n=3$,

$$
2\left(\sqrt{x_{1}}+\sqrt{x_{2}}+\sqrt{x_{3}}\right)=4 \sqrt{x_{3}} \Longrightarrow 2 \sqrt{x_{3}}=2\left(\sqrt{x_{1}}+\sqrt{x_{2}}\right)=6 \sqrt{x_{1}} \Longrightarrow x_{3}=9 x_{1}=9 a
$$

We conjecture that $x_{k}=k^{2} a$ for each positive integer k.
Let $m \geq 2$ and suppose that $x_{k}=k^{2} a$ for $1 \leq k \leq m-1$.

$$
\begin{aligned}
(m-1) \sqrt{x_{m}} & =(m+1) \sqrt{x_{m}}-2 \sqrt{x_{m}}=2\left(\sqrt{x_{1}}+\cdots+\sqrt{x_{m-1}}\right) \\
& =2 \sqrt{x_{1}}(1+2+\cdots+(m-1))=m(m-1) \sqrt{a}
\end{aligned}
$$

whence $\sqrt{x_{m}}=m \sqrt{a}$ and $x_{m}=m^{2} a$.
Thus, $x_{k}=k^{2} a$ for all $k \geq 1$. Therefore

$$
\sum_{k=1}^{n} x_{k}=\left(1+4+\cdots+n^{2}\right) a=\frac{n(n+1)(2 n+1) a}{6}
$$

