
Solutions for January

528. Let the sequence {xn : n = 0, 1, 2, · · ·} be defined by x0 = a and x1 = b, where a and b are real numbers,
and by

7xn = 5xn−1 + 2xn−2

for n ≥ 2. Derive a formula for xn as a function of a, b and n.

Solution. This can be done by the standard theory of solving linear recursions. The auxiliary equation
is 7t2 − 5t − 2 = 0, with roots 1 and −2/7. Trying a solution of the form xn = A · 1n + B(−2/7)n and
plugging in the initial conditions leads to A + B = a and A− (2/7)B = b and the solution

xn =
2a + 7b

9
+

7(a− b)
9

·
(
− 2

7

)n

.

529. Let k, n be positive integers. Define pn,1 = 1 for all n and pn,k = 0 for k ≥ n + 1. For 2 ≤ k ≤ n, we
define inductively

pn,k = k(pn−1,k−1 + pn−1,k) .

Prove, by mathematical induction, that

pn,k =
k−1∑
r=0

(
k

r

)
(−1)r(k − r)n .

Solution. Let

qn,k =
k−1∑
r=0

(
k

r

)
(−1)r(k − r)n .

When n = 1, we have that q1,1 =
(
1
0

)
1 = 1 and, for k ≥ 2,

q1,k =
k−1∑
r=0

(
k

r

)
(−1)rk −

k−1∑
r=0

(
k

r

)
(−1)rr = k[(1− 1)k − (−1)k] + k[(1− 1)k−1 − (−1)k−1] = 0 .

Also qn,1 =
(
1
0

)
1n = 1 for n ≥ 1. When (n, k) = (2, 2), we have that q2,2 =

(
2
0

)
22 −

(
2
1

)
1 = 2 and

p2,2 = 2(1 + 0) = 2. When n = 2 and k ≥ 3, then

q2,k =
k−1∑
r=0

(
k

r

)
(−1)r(k − r)2

=
k−1∑
r=0

(
k

r

)
(−1)r[k2 − (2k − 1)r + r(r − 1)]

= k2
k−1∑
r=0

(
k

r

)
(−1)r + (2k − 1)k

k−1∑
r=0

(
k − 1
r − 1

)
(−1)r−1 + k(k − 1)

k−1∑
r=0

(
k − 2
r − 2

)
(−1)r−2

= (−1)k−1k2 + (2k − 1)k(−1)k−2 + k(k − 1)(−1)k−3

= (−1)k−3[k2 − 2k2 + k + k2 − k] = 0 .

Thus, we have that pn,k = qn,k for all n and k = 1 as well as for n = 1, 2 and all k.
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The remainder of the argument can be done by induction. Suppose that n ≥ 2 and that k ≥ 2 and that
it has been shown that pn,k = qn,k and pn,k−1 = qn,k−1. Then

pn+1,k = k(pn,k + pn,k−1)

= k

[ k−1∑
r=0

(
k

r

)
(−1)r(k − r)n +

k−2∑
r=0

(
k − 1

r

)
(−1)r(k − 1− r)n

]

= k

[
kn +

k−1∑
r=1

(
k

r

)
(−1)r(k − r)n +

k−1∑
r=1

(
k − 1
r − 1

)
(−1)r−1(k − r)n

]

= k

[
kn +

k−1∑
r=1

[(
k

r

)
−

(
k − 1
r − 1

)]
(−1)r(k − r)n

]

= kn+1 + k
k−1∑
r=1

(
k − 1

r

)
(−1)r(k − r)n

= kn+1 +
k−1∑
r=1

(
k

r

)
(−1)r(k − r)n+1

=
k−1∑
r=0

(
k

r

)
(−1)r(k − r)n+1 = qn+1,k ,

as desired.

530. Let {x1, x2, x3, · · · , xn, · · ·} be a sequence is distinct positive real numbers. Prove that this sequence is
a geometric progression if and only if

x1

x2

n−1∑
k=1

x2
n

xkxk+1
=

x2
n − x2

1

x2
2 − x2

1

for all n ≥ 2.

Solution. Necessity. Suppose that xk = ark−1 for some numbers a and r. Then

x1

x2

n−1∑
k=1

x2
n

xkxk+1
=

r2(n−1)

r

n−1∑
k=1

1
r2k−1

= (r2n−3)
(

1
r

+
1
r3

+ · · ·+ 1
r2n−3

)
= 1 + r2 + · · ·+ r2(n−2) =

r2(n−1) − 1
r2 − 1

=
x2

n − x2
1

x2
2 − x2

1

.

Sufficiency. Suppose that the equations of the problem holds. When n = 2, both sides of the equation
are equal to 1 regardless of the sequence. When n = 3, the equation is equivalent to

x1x
2
3

x1x2
2x3

(x3 + x1) =
(x3 − x1)(x3 + x1)

x2
3 − x2

1

.

Since x3+x1 6= 0 [why?], we can divide out this factor and multiply up the denominators to get the equivalent

x3(x2
2 − x2

1) = x2
2(x3 − x1) ⇐⇒ x3x

2
1 = x2

2x1 ⇐⇒ x1x3 = x2
2 ,

whence x1, x2, x3 are in geometric progression.
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Suppose, as an induction hypothesis, for n ≥ 4 we know that xk = ark−1 for suitable a and r and
k = 1, 2, · · · , n− 1. Let xn = aun for some number un.

Then
u2

n

r

(
1
r

+
1
r3

+ · · ·+ 1
r2n−5

+
1

rn−2un

)
=

u2
n − 1

r2 − 1

⇐⇒ [u2
n(1 + r2 + r4 + · · ·+ r2n−6) + rn−3un](r2 − 1) = (u2

n − 1)(r2n−4)

⇐⇒ (r2n−4 − 1)u2
n + (rn−3r2 − rn−3)un = (r2n−4)u2

n − r2n−4

⇐⇒ 0 = u2
n − (rn−1 − rn−3)un − r2n−4 = (un − rn−1)(un + rn−3) .

The case un = −rn−3 is rejected because of the condition that the sequence consists of positive terms. Hence
un = rn−1, as desired. The result follows.

Comment. In the absence of the positivity contiion, the second root of the quadratic can be used. For
example, the finite sequences {1, r, r2,−r, 1} and {1, r, r2,−r,−r2} both satisfies the equations for 2 ≤ n ≤ 5.
It would be interesting to investigate the situation further.

531. Show that the remainder of the polynomial

p(x) = x2007 + 2x2006 + 3x2005 + 4x2004 + · · ·+ 2005x3 + 2006x2 + 2007x + 2008

is the same upon division by x(x + 1) as upon division by x(x + 1)2.

Solution 1. We have that

p(x) = (x2007 + 2x2006 + x2005) + 2(x2005 + 2x2004 + x2003) + 3(x2003+

2x2002 + x2001) + · · ·+ 1003(x3 + 2x2 + x) + 1004x + 2008

= x(x + 1)2(x2004 + 2x2002 + 3x2000 + · · ·+ 1003) + (1004x + 2008) ,

from which the result follows with remainder 1004x + 2008.

532. The angle bisectors BD and CE of triangle ABC meet AC and AB at D and E respectively and meet
at I. If [ABD] = [ACE], prove that AI ⊥ ED. Is the converse true?

Solution. Observe that
[ADB] : [CBD] = AD : DC = AB : BC

and that
[ACE] : [BCE] = AE : EB = AC : BC .

Now
[ABD] = [ACE] ⇐⇒ [DBC] = [ABC]− [ABD] = [ABC]− [ACE] = [EBC]

⇐⇒ ED‖BC ⇐⇒ AE : EB = AD : DC

⇐⇒ AB : BC = AC : BC ⇐⇒ AB = BC

⇐⇒ AI ⊥ BC .

Both the result and the converse is true. If [ABD] = [ACE], the foregoing chain of implications can
be read in the forward direction to deduce that AI ⊥ ED. Note that AI bisects angle A in triangle AED.
Thus, if AI ⊥ ED, then it follows that triangle AED is isosceles with AE = AD. Then AE : DC =
AD : DC = AB : BC and AE : EB = AC : BC, whence DC · AB = AE · BC = EB · AC. Therefore
DC · (AE + EB) = EB · (AD + CD), so that DC · AE = EB · AD and DC = EB. Therefore AB = AC
and, following the foregoing implication in the backwards direction, we find that [ABD] = [ACE].

533. Prove that the number
1 + b(5 +

√
17))2008c
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is divisible by 22008.

Solution. Let a = 5 +
√

17 and b = 5−
√

17, so that a + b = 10 and ab = 8. Define xn = an + bn. Then
x1 = 10, x2 = (a + b)2 − 2ab = 96 and

xn+2 = an+2 + bn+2 = (a + b)(an+1 + bn+1)− ab(an + bn)
= 10xn+1 − 8xn ,

for n ≥ 0. Note that x1 is divisible by 2 and x2 by 4. Suppose, as an induction hypothesis, that xn = 2nu
and xn+1 = 2n+1v, for some k ≥ 0 and integers u and v. Then

xn+2 = 5 · 2n+2 − 2n+3 = 3 · 2n+2 .

Hence, for all positive integers n, 2n divides xn.

Observe that (5 −
√

17)n = bn < 1 for each positive integer n and that an + bn is a positive integer.
Therefore xn = an + bn > an > an + bn − 1 = xn − 1, whence xn = 1 + banc and the result follows.

534. Let {xn : n = 1, 2, · · ·} be a sequence of distinct positive integers, with x1 = a. Suppose that

2
n∑

k=1

√
xi = (n + 1)

√
xn

for n ≥ 2. Determine
∑n

k=1 xk.

Solution. When n = 2, 2(
√

x1 +
√

x2) = 3
√

x2, whence
√

x2 = 2
√

x1 and x2 = 4x1 = 4a. When n = 3,

2(
√

x1 +
√

x2 +
√

x3) = 4
√

x3 =⇒ 2
√

x3 = 2(
√

x1 +
√

x2) = 6
√

x1 =⇒ x3 = 9x1 = 9a .

We conjecture that xk = k2a for each positive integer k.

Let m ≥ 2 and suppose that xk = k2a for 1 ≤ k ≤ m− 1.

(m− 1)
√

xm = (m + 1)
√

xm − 2
√

xm = 2(
√

x1 + · · ·+√
xm−1)

= 2
√

x1(1 + 2 + · · ·+ (m− 1)) = m(m− 1)
√

a ,

whence
√

xm = m
√

a and xm = m2a.

Thus, xk = k2a for all k ≥ 1. Therefore

n∑
k=1

xk = (1 + 4 + · · ·+ n2)a =
n(n + 1)(2n + 1)a

6
.
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