Solutions for August

633. Let $A B C$ be a triangle with $B C=2 \cdot A C-2 \cdot A B$ and D be a point on the side $B C$. Prove that $\angle A B D=2 \angle A D B$ if and only if $B D=3 C D$.

Solution 1. [A. Murali] Let $\angle A D B=\theta,|A B|=c,|C A|=b,|A D|=d,|C D|=x,|B D|=y$. Assume that $\angle A B D=2 \angle A D B$. By the Law of Sines applied to triangle $A B D$,

$$
\frac{d}{\sin 2 \theta}=\frac{c}{\sin \theta} \Longrightarrow d=2 c \cos \theta .
$$

By the Law of Cosines in triangle $A B D$,

$$
4 c^{2} \cos ^{2} \theta=d^{2}=c^{2}+y^{2}-2 c y \cos 2 \theta
$$

from which

$$
\begin{aligned}
0 & =y^{2}-(2 c \cos 2 \theta) y+c^{2}\left(1-4 \cos ^{2} \theta\right) \\
& =y^{2}-(2 c \cos 2 \theta) y-c^{2}(2 \cos 2 \theta+1) \\
& =[y+c][y-c(2 \cos 2 \theta+1)]
\end{aligned}
$$

Hence $y=(2 \cos 2 \theta+1) c$.
By the Law of Cosines in triangle $A C D$,

$$
b^{2}=d^{2}+x^{2}+2 x d \cos \theta \Longrightarrow 0=4\left[x^{2}+(2 d \cos \theta) x+\left(d^{2}-b^{2}\right)\right]
$$

Since $x+y=2(b-c)$, then

$$
2 b=x+y+2 c=x+(2 \cos 2 \theta+3) c
$$

Now $2 d \cos \theta=4 c \cos ^{2} \theta=2 c \cos 2 \theta+2 c$ and

$$
4 d^{2}-4 b^{2}=16 c^{2} \cos ^{2} \theta-x^{2}-2 c(2 \cos 2 \theta+3) x-(2 \cos 2 \theta+3)^{2} c^{2}
$$

whence

$$
\begin{aligned}
0 & =4 x^{2}+(8 \cos 2 \theta+8) c x+16 c^{2} \cos ^{2} \theta-x^{2}-(4 \cos 2 \theta+6) c x-\left(4 \cos ^{2} 2 \theta+12 \cos 2 \theta+9\right) c^{2} \\
& =3 x^{2}+(4 \cos 2 \theta+2) c x+\left[(8 \cos 2 \theta+8)-\left(4 \cos ^{2} 2 \theta+12 \cos 2 \theta+9\right)\right] c^{2} \\
& =3 x^{2}+(4 \cos 2 \theta+2) c x-\left[4 \cos ^{2} 2 \theta+4 \cos 2 \theta+1\right] c^{2} \\
& =3 x^{2}+(4 \cos 2 \theta+2) c x-(2 \cos 2 \theta+1)^{2} c^{2} \\
& =[3 x-(2 \cos 2 \theta+1) c][x+(2 \cos 2 \theta+1) c]=[3 x-y][x+y]=a(3 x-y) .
\end{aligned}
$$

Hence $y=3 x$.
For the converse, let $y=3 x, \angle A D B=\theta$ and $\angle A B D=\beta$. By hypothesis, $|B C|=4 x=2(b-c)$. By the Law of Cosines on triangle $A B C, b^{2}=c^{2}+16 x^{2}-8 c x \cos \beta$, so that

$$
\begin{aligned}
\cos \beta & =\frac{16 x^{2}+c^{2}-b^{2}}{8 c x}=\frac{4(b-c)^{2}+\left(c^{2}-b^{2}\right)}{4 c(b-c)} \\
& =\frac{4(b-c)-(c+b)}{4 c}=\frac{3 b-5 c}{4 c}
\end{aligned}
$$

By Stewart's Theorem, $b^{2}(3 x)+c^{2}(x)=4 x\left[d^{2}+(3 x) x\right]$, so that

$$
\begin{aligned}
d^{2} & =\frac{3 b^{2}+c^{2}-12 x^{2}}{4}=\frac{3 b^{2}+c^{2}-3(b-c)^{2}}{4} \\
& =\frac{6 b c-2 c^{2}}{4}=\frac{(3 b-c) c}{2}
\end{aligned}
$$

From triangle $A B D$, we have that $c^{2}=d^{2}+9 x^{2}-6 d x \cos \theta$, so that

$$
\begin{aligned}
\cos \theta & =\frac{9 x^{2}+d^{2}-c^{2}}{6 d x}=\frac{(3 x-c)(3 x+c)+d^{2}}{6 d x} \\
& =\frac{(6 x-2 c)(6 x+2 c)+4 d^{2}}{24 d x}=\frac{(3 b-5 c)(3 b-c)+2(3 b-c) c}{12 d(b-c)} \\
& =\frac{(3 b-c)(3 b-3 c)}{12 d(b-c)}=\frac{3 b-c}{4 d}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\cos 2 \theta & =2 \cos ^{2} \theta-1=\frac{2(3 b-c)^{2}}{16 d^{2}}-1 \\
& =\frac{2(3 b-c)^{2}-8(3 b-c) c}{8(3 b-c) c}=\frac{2(3 b-c)-8 c}{8 c}=\frac{3 b-5 c}{4 c}=\cos \beta
\end{aligned}
$$

Thus, either $2 \theta=\beta$ or $2 \theta=2 \pi-\beta$. But the latter case is excluded, since it would imply that β and θ are two angles of a triangle for which $\beta+\theta=2 \pi-\theta=\pi+\beta / 2>\pi$.

Solution 2. Case (i): Suppose that $\angle B$ is acute. Let $A H \perp B C$ and E lie on $C H$ such that $A E=A B$.
$A C^{2}-C H^{2}=A B^{2}-B H^{2}$ implies that
$A C^{2}-A B^{2}=C H^{2}-B H^{2}=(C H-B H)(C H+B H)=(C H-H E) B C=C E \cdot B C=C E[2(A C-A B)]$.
Hence $A C+A B=2 C E$. Also $A C-A B=\frac{1}{2} B C$. Therefore $2 A B+\frac{1}{2} B C=2 C E$.
Suppose that $\angle A B D=2 \angle A D B$. Then $\angle A E B=2 \angle A D B \Rightarrow \triangle A D E$ is isosceles. Hence

$$
A B=A E=D E \Rightarrow 2 D E+\frac{1}{2} B C=2 C E \Rightarrow B C=4(C E-D E)=4 C D \Rightarrow B D=3 C D
$$

Conversely, suppose that $B D=3 C D$. Then

$$
B C=4 C D \Rightarrow \frac{1}{4} B C=C E-D E
$$

From the above,

$$
\begin{aligned}
A B & =C E-\frac{1}{4} B C=D E \Rightarrow A E=D E \\
& \Rightarrow \angle A B D=\angle A E B=2 \angle A D B
\end{aligned}
$$

Case (ii): Suppose $\angle B=90^{\circ}$. Then

$$
\begin{gathered}
A C^{2}-A B^{2}=B C^{2}=2(A C-A B) \cdot B C \Rightarrow A C+A B=2 B C \\
\Rightarrow \frac{1}{2} B C+A B+A B=2 B C \Rightarrow A B=\frac{3}{4} B C \\
\angle A B D=2 \angle A D B \Rightarrow \angle A D B=45^{\circ}=\angle B A D \Rightarrow A B=B D \\
\Rightarrow B D=\frac{3}{4} B C \Rightarrow B D=3 C D \\
B D=3 C D \Rightarrow B D=\frac{3}{4} B C=A B \Rightarrow \angle A D B=\angle B A D=45^{\circ}=\frac{1}{2} \angle A B D
\end{gathered}
$$

Case (iii): Suppose $\angle B$ exceeds 90°. Let $A H \perp B C$ and E be on $C H$ produced such that $A E=A B$. Then
$A C^{2}-C H^{2}=A B^{2}-B H^{2} \Rightarrow(A C-A B)(A C+A B)=C H^{2}-B H^{2}=(C H-B H)(C H+B H)=C B \cdot C E$

$$
\Rightarrow A C+A B=2 C E .
$$

Also

$$
A C-A B=\frac{1}{2} B C \Rightarrow 2 A B+\frac{1}{2} B C=2 C E \Rightarrow A B+\frac{1}{4} B C=C E
$$

Let $\angle A B D=2 \angle A D B$. Then

$$
180^{\circ}-\angle A B E=2 \angle A D B \Rightarrow \angle A E B+2 \angle A D E=\angle A B E+2 \angle A D B=180^{\circ}
$$

Also

$$
\angle A E B+\angle E A D+\angle A D E=180^{\circ} \Rightarrow \angle E A D=\angle A D E \Rightarrow A E=E D
$$

Hence

$$
A B=E D \Rightarrow 2 E D+\frac{1}{2} B C=2 C E \Rightarrow B C=4(C E-D E)=4 C D \Rightarrow B D=3 C D
$$

Conversely, suppose that $B D=3 C D$. Then $B C=4 C D$ and $E D=C E-C D=C E-\frac{1}{4} B C=A B$ so that $E D=A E$ and $\angle E A D=\angle A D E$. Therefore

$$
\angle A B D=180^{\circ}-\angle A E D=\angle E A D+\angle A D E=2 \angle A D E=2 \angle A D B
$$

Solution 3. [R. Hoshino] Let $\angle A B D=2 \theta$. By the Law of Cosines, with the usual conventions for a, b, c,

$$
\begin{align*}
& 1-2 \sin ^{2} \theta=\cos 2 \theta=\frac{c^{2}+4(b-c)^{2}-b^{2}}{4 c(b-c)} \\
&=\frac{b-c}{c}-\frac{b+c}{4 c}=\frac{3 b-5 c}{4 c} \quad(\text { since } \quad b \neq c) \\
& \Rightarrow 3(b-c)=6 c-8 c \sin ^{2} \theta \\
& \Rightarrow \frac{3(b-c)}{2} \sin \theta=c\left(3 \sin \theta-4 \sin ^{3} \theta\right)=c \sin 3 \theta \\
& \Rightarrow \frac{\sin \theta}{c}=\frac{2 \sin 3 \theta}{3(b-c)} .(*) \tag{*}
\end{align*}
$$

Suppose now that D is selected so that $\angle A D B=\theta$. Then, by the Law of Sines,

$$
\frac{\sin \theta}{c}=\frac{\sin \left(180^{\circ}-3 \theta\right)}{x}=\frac{\sin 3 \theta}{x}
$$

where $x=|B D|$. Comparison with $\left(^{*}\right)$ yields $x=\frac{1}{2}(3(b-c))$ so $4 B D=3 B C \Rightarrow B D=3 C D$ as desired.
On the other hand, suppose D is selected so that $B D=3 C D$. Then $B D=\frac{3}{2}(b-c)$. Let $\angle A D B=\phi$. Then

$$
\frac{\sin \phi}{c}=\frac{\sin \left(180^{\circ}-\phi-2 \theta\right)}{\frac{3}{2}(b-c)}=\frac{\sin (\phi+2 \theta)}{\frac{3}{2}(b-c)} .
$$

Hence

$$
\begin{aligned}
\frac{\sin (\phi+2 \theta)}{\sin \phi}=\frac{\sin 3 \theta}{\sin \theta} & \Rightarrow \sin \theta \sin (\phi+2 \theta)=\sin 3 \theta \sin \phi \\
& \Rightarrow \frac{1}{2}[\cos (\theta+\phi)-\cos (3 \theta+\phi)]=\frac{1}{2}[\cos (3 \theta-\phi)-\cos (3 \theta+\phi)] \\
& \Rightarrow \cos (\theta+\phi)=\cos (3 \theta-\phi) \\
& \Rightarrow \theta+\phi= \pm(3 \theta-\phi) \quad \text { or } \quad \theta+\phi+3 \theta-\phi=360^{\circ}
\end{aligned}
$$

The only viable possibility is $\theta+\phi=3 \theta-\phi \Rightarrow \theta=\phi$ as desired.

Solution 4. [J. Chui] First, recall Stewart's Theorem. Let $X Y Z$ be a triangle with sides x, y, z respectively opposite $X Y Z$. Let W be a point on $Y Z$ so that $|X W|=u,|Y W|=v$ and $|Z W|=w$. Then $x\left(u^{2}+v w\right)=v y^{2}+w z^{2}$. This is an immediate consequence of the Law of Cosines. Let $\theta=\angle Y W X$. Then $z^{2}=u^{2}+v^{2}-2 u v \cos \theta$ and $y^{2}=u^{2}+w^{2}+2 u w \cos \theta$. Multiply these equations by u and v respectively, add and use $x=v+w$ to obtain the result.

Now to the problem. Suppose $B D=3 C D$. Let $|A C|=2 b,|A B|=2 c$, so that $|B C|=4(b-c)$, $|B D|=3(b-c)$ and $|C D|=b-c$. If $|A D|=d$, then an application of Stewart's Theorem yields $d^{2}=2 c(3 b-c)$. Applying the Law of Cosines to $\triangle A B C$ and $\triangle A B D$ respectively yields

$$
\cos \angle A B C=\frac{3 b-5 c}{4 c} \quad \text { and } \quad \cos \angle A D B=\frac{3 b-c}{2 \sqrt{2 c(3 b-c)}}
$$

Then $\cos 2 \angle A D B=(3 b-5 c) / 4 c$. Hence, either $2 \angle A D B=\angle A B C$ or $\angle A B C+2 \angle A D B=360^{\circ}$. In the latter case, $\angle A B C+\angle A D B=360^{\circ}-\angle A D B>180^{\circ}$, which is false. Hence $\angle A B C=2 \angle A D B$.

On the other hand, let $2 \angle A D B=\angle A B C$. If D^{\prime} is a point on $B C$ with $B D^{\prime}=3 C D^{\prime}$, the $2 \angle A D^{\prime} B=$ $\angle A B C=2 \angle A D B$, so that $D=D^{\prime}$. The result follows.

Solution 5. Let $|A B|=a,|A C|=a+2,|B D|=3,|C D|=1, \angle A B D=2 \theta, \angle A D B=\phi$. Then $(a+2)^{2}=a^{2}+16-8 a \cos 2 \theta$, whence $a=3(1+2 \cos 2 \theta)^{-1}$ (so $\left.0<\theta<60^{\circ}\right)$. By the Law of Sines,

$$
\frac{\sin (2 \theta+\phi)}{3}=\frac{(1+2 \cos 2 \theta) \sin \phi}{3}
$$

so that

$$
\begin{aligned}
0 & =\sin \phi+2 \sin \phi \cos 2 \theta-\sin (2 \theta+\phi) \\
& =\sin \phi+\sin \phi \cos 2 \theta-\sin 2 \theta \cos \phi \\
& =\sin \phi+\sin (\phi-2 \theta)=2 \sin (\phi-\theta) \cos \theta
\end{aligned}
$$

Since $0 \leq|\phi-\theta|<180^{\circ}$, we find that $\phi=\theta$ as desired. The converse can be obtained as in the third solution.

Solution 6. [A. Birka] First, note that, when $B D=3 C D$, we must have $\angle A D B<90^{\circ}$, since $A C>A B$ and D is on the same side of the altitude from A as C. Also, when $\angle A B D=2 \angle A D B, \angle A D B<90^{\circ}$. Thus, we can assume that $\angle A D B$ is acute throughout.

We can select positive numbers u, v and w so that $|B C|=v+w,|A C|=u+w$ and $|A B|=u+v$. By hypothesis, $v+w=2(w-v)$, so that $w=3 v$.

Suppose that $B D=3 C D$. Then $B C=4 C D$, whence $|C D|=v$. Hence $|B D|=3 v$. By the Law of Cosines,

$$
(u+3 v)^{2}=(u+v)^{2}+(4 v)^{2}-8 v(u+v) \cos B
$$

so that

$$
\cos B=\frac{8 v^{2}-4 u v}{8 v(u+v)}=\frac{2 v-u}{2(u+v)}
$$

Hence

$$
|A D|^{2}=(u+v)^{2}+(3 v)^{2}-6 v(u+v) \cos B=u^{2}+5 u v+4 v^{2}=(u+4 v)(u+v)
$$

Since $\sin ^{2} \angle A B D=1-\cos ^{2} B=[3 u(u+4 v)] /\left[4(u+v)^{2}\right]$, and, by the Law of Sines,

$$
\frac{\sin ^{2} \angle A D B}{\sin ^{2} \angle A B D}=\frac{u+v}{u+4 v}
$$

we have that

$$
\sin ^{2} \angle A D B=\frac{3 u}{4(u+v)} \quad \text { and } \quad \cos ^{2} \angle A D B=\frac{u+4 v}{4(u+v)}
$$

Thus $\sin ^{2} \angle A B D=4 \sin ^{2} \angle A D B \cos ^{2} \angle A D B$ so that either $\angle A B D=2 \angle A D B$ or $\angle A B D+2 \angle A D B=180^{\circ}$. The latter case would yield $\angle A D B=\angle B A D$, so that $A B=B D$. This would make $\triangle A B C$ a $3-4-5$ right triangle and $\triangle A B D$ an isosceles right triangle, whence $90^{\circ}=\angle A B D=2 \angle A D B$. The converse can be shown as in the previous solutions. The result follows.
634. Solve the following system for real values of x and y :

$$
\begin{gathered}
2^{x^{2}+y}+2^{x+y^{2}}=8 \\
\sqrt{x}+\sqrt{y}=2
\end{gathered}
$$

Preliminary comments. With the surds in the second equation, we must restrict ourselves to nonnegative values of x. Because of the complexity of the expressions, it is probably impossible to eliminate one of the variables and solve for the other. Let us make a few preliminary observations:
(i) $(x, y)=(1,1)$ is an obvious solution;
(ii) Both equations are symmetric in x and y;
(iii) Taking $f(x, y)=2^{x^{2}+y}+2^{x+y^{2}}$ and $g(x, y)=\sqrt{x}+\sqrt{y}$, we have that $f(0, y)=2^{y}+2^{y^{2}}$ and $g(0, y)=\sqrt{y}$; thus, $f(0, y)=8 \Rightarrow 1<y<2$ and $g(0, y)=2 \Leftrightarrow y=4$. The graphs of $f(x, y)=8$ and $g(x, y)=2$ should be sketched.

This suggests that $f(x, y)=8 \Rightarrow x+y \leq 2$ and $g(x, y)=2 \Rightarrow x+y \geq 2$ with equality for both $\Leftrightarrow(x, y)=(1,1)$. Hence we look for a relationship among $f(x, y), g(x, y)$ and $x+y$.

Solution 1.

$$
(\sqrt{x}+\sqrt{y})^{2}=x+2 \sqrt{x y}+y \leq x+(x+y)+y=2(x+y)
$$

by the Arithmetic-Geometric Means Inequality. Hence

$$
\sqrt{x}+\sqrt{y} \leq \sqrt{2(x+y)}
$$

Also, by the same AGM inequality,

$$
2^{x^{2}+y}+2^{x+y^{2}} \geq 2 \sqrt{2^{x^{2}+y+x+y^{2}}} .
$$

Now, using the inequality again, we find that

$$
x^{2}+y+x+y^{2}=\left(x^{2}+y^{2}\right)+(x+y) \geq \frac{1}{2}(x+y)^{2}+(x+y)
$$

so that

$$
2^{x^{2}+y}+2^{x+y^{2}} \geq 2^{1+\frac{1}{4}(x+y)^{2}+\frac{1}{2}(x+y)}=2^{\frac{1}{4}\left[(x+y+1)^{2}+3\right]}
$$

Suppose the (x, y) satisfies the system. Then

$$
\sqrt{2(x+y)} \geq 2 \Rightarrow(x+y) \geq 2
$$

and

$$
\frac{1}{4}\left[(x+y+1)^{2}+3\right] \leq 3 \Rightarrow(x+y+1)^{2} \leq 9 \Rightarrow x+y+1 \leq 3 \Rightarrow x+y \leq 2
$$

Hence $x+y=2$ and all inequalities are equalities. Therefore $x=y=1$.
Solution 2. [A. Rodriguez] Wolog, we may assume that $x \geq 1$. Let $\sqrt{x}+\sqrt{y}=2$; then $y=(2-\sqrt{x})^{2}$. Define

$$
\begin{aligned}
g(x) & =x+y^{2}+y+x^{2}=(2-\sqrt{x})^{4}+x^{2}+x+(2-\sqrt{x})^{2} \\
& =2 x^{2}-8 x^{\frac{3}{2}}+26 x-36 x^{\frac{1}{2}}+20 .
\end{aligned}
$$

Then

$$
\begin{aligned}
g^{\prime}(x) & =4 x-12 x^{\frac{1}{2}}+26-18 x^{-\frac{1}{2}}=2 x^{-\frac{1}{2}}\left(2 x^{\frac{3}{2}}-6 x+13 x^{\frac{1}{2}}-9\right) \\
& =2 x^{-\frac{1}{2}}\left(x^{\frac{1}{2}}-1\right)\left(2 x-4 x^{\frac{1}{2}}+9\right)=2 x^{-\frac{1}{2}}\left(x^{\frac{1}{2}}-1\right)\left[2\left(x^{\frac{1}{2}}-1\right)^{2}+7\right]>0
\end{aligned}
$$

for $x>1$. Hence $g(x)$ is strictly increasing for $x>1$, so that $g(x) \geq g(1)=4$ for $x \geq 1$ with equality if and only if $x=1$. Thus, if the first equation holds, then

$$
8=2^{x^{2}+y}+2^{x+y^{2}} \geq 2 \sqrt{2^{g(x)}} \Rightarrow 16 \geq 2^{g(x)} \Rightarrow g(x) \leq 4
$$

Hence $g(x)=4$, so that $x=1$ and $y=1$. Thus, $(x, y)=(1,1)$ is the only solution.
Solution 3. [S. Yazdani] Set $\sqrt{x}=1+u$ and $\sqrt{y}=1-u$. Then $x^{2}+y=(1+u)^{4}+(1-u)^{2}$ and $x+y^{2}=(1-u)^{4}+(1+u)^{2}$, so

$$
8=2^{x^{2}+y}+2^{x+y^{2}}=2^{u^{4}+7 u^{2}+2}\left(2^{4 u^{3}+2 u}+\frac{1}{2^{4 u^{3}+2 u}}\right) \geq 2^{2}(2)=8
$$

with equality if and only if $u=0$. Since the extremes of this inequality are equal, we must have $u=0$, so $x=y=1$.

Solution 4. [C. Hsia] With $\sqrt{x}=1+u$ and $\sqrt{y}=1-u$, we can write the first equation as

$$
2^{4 u^{3}+2 u}+\frac{1}{2^{4 u^{3}+2 u}}=2^{1-7 u^{2}-u^{4}}
$$

Let $z=2^{4 u^{3}+2 u}$. We note that the quadratic $z^{2}-2^{1-7 u^{2}-u^{4}} z+1=0$ is solvable, and so has nonnegative discriminant. Hence

$$
2^{2-14 u^{2}-2 u^{4}} \geq 4=2^{2} \Rightarrow-14 u^{2}-2 u^{4} \geq 0 \Rightarrow u=0
$$

Hence $x=y=1$.
Solution 5. [M. Boase] $2(x+y) \geq(x+y)+2 \sqrt{x y}=(\sqrt{x}+\sqrt{y})^{2}=4$ so that $x+y \geq 2$. Let $f(t)=t(t+1)$. For positive values of $t, f(t)$ is an increasing strictly convex function of t. Hence

$$
f(x)+f(y) \geq 2 f\left(\frac{1}{2}(x+y)\right) \geq 2 f(1)=4
$$

so that $x^{2}+x+y^{2}+y \geq 4$. Equality occurs if and only if $x=y=1$. Applying the Arithmetic-Geometric Means Inequality, we find that

$$
4=\frac{1}{2}\left(2^{x^{2}+y}+2^{x+y^{2}}\right) \geq 2^{\frac{1}{2}\left(x^{2}+y^{2}+x+y\right)}
$$

so that $x^{2}+x+y^{2}+y \leq 4$. Hence $x^{2}+x+y^{2}+y=4$ and so $x=y=1$.
Comment. Note that $2\left(x^{2}+y^{2}\right) \leq(x+y)^{2}$ with equality if and only if $x=y$. Hence

$$
x^{2}+y^{2}+x+y \geq \frac{1}{2}(x+y)^{2}+(x+y) \geq 4
$$

with equality if and only if $x=y=1$. This avoids the use of the convexity of the function f.
Solution 6. [J. Chui] Wolog, let $x \geq y$ so that $\sqrt{x} \geq 1 \geq \sqrt{y}$. Suppose that $\sqrt{x}=1+u$ and $\sqrt{y}=1-u$. Then $x+y=2+2 u^{2} \geq 2$ and $x y=\left(1-u^{2}\right)^{2} \leq 1$. Thus

$$
\begin{aligned}
8 & =2^{x^{2}+y}+2^{x+y^{2}} \geq 2 \sqrt{2^{x^{2}+y+x+y^{2}}} \\
& =2 \sqrt{2^{(x+y)(x+y+1)-2 x y}} \geq 2 \sqrt{2^{2 \cdot 3-2 \cdot 1}}=2^{3}=8
\end{aligned}
$$

with equality if and only if $x=y$.
Solution 7. [C. Deng] By the Root-Mean-Square, Arithmetic Mean Inequality, we have that

$$
\frac{x^{2}+y^{2}}{2} \geq\left(\frac{x+y}{2}\right)^{2} \geq\left(\frac{\sqrt{x}+\sqrt{y}}{2}\right)^{4}=1
$$

with equality if and only if $x=y=1$. By the Arithmetic-Geometric Means Inequality, we have

$$
\begin{aligned}
4 & =\frac{2^{x^{2}+y}+2^{x+y^{2}}}{2} \geq \sqrt{2^{x^{2}+y^{2}+x+y}} \\
& \geq \sqrt{2^{2+2}}=4
\end{aligned}
$$

Since equality must hold throughtout, $x=y$, and thus the only solution to the system is $(x, y)=(1,1)$.
635. Two unequal spheres in contact have a common tangent cone. The three surfaces divide space into various parts, only one of which is bounded by all three surfaces; it is "ring-shaped". Being given the radii r and R of the spheres with $r<R$, find the volume of the "ring-shaped" region in terms of r and R.

Solution. Let P and Q be the centres of the spheres of respective radii r and R, and let O be the apex of the cone. Consider a vertical slice of the configuration through its axis of rotation. Let A and B be points in the slice that are the tangent points of the smaller and larger spheres, respectively, with the tangent cone. Let u and V be the centres of the circles through A and B, respectively, that are perpendicular ot the axis of rotation.

From a consideration of similar triangles and pythagoras theorem, we find that

$$
\begin{array}{ll}
|O P|=r\left(\frac{R+r}{R-r}\right) & |O U|=\frac{4 R r^{2}}{R^{2}-r^{2}} \\
|U P|=r\left(\frac{R-r}{R+r}\right) & |A U|=\frac{2 r}{R+r} \sqrt{R r} \\
|O Q|=R\left(\frac{R+r}{R-r}\right) & |O V|=\frac{4 R^{2} r}{R^{2}-r^{2}} \\
|V Q|=R\left(\frac{R-r}{R+r}\right) & |B V|=\frac{2 R}{R+r} \sqrt{R r}
\end{array}
$$

The volume of the cone obtained by rotating $O B V$ is

$$
\frac{1}{3} \pi|B V|^{2}|O V|=\frac{16 \pi R^{5} r^{2}}{3(R+r)^{3}(R-r)}
$$

and the volume of the cone obtained by rotating $O A U$ is

$$
\frac{16 \pi R^{2} r^{5}}{3(R+r)^{3}(R-r)}
$$

so that the volume of the frustum obtained by rotating $A U V B$ is

$$
\frac{16 \pi R^{2} r^{2}\left(R^{3}-r^{3}\right)}{3(R+r)^{3}(R-r)}=\frac{16 \pi R^{2} r^{2}}{3(R+r)^{3}}\left(R^{2}+R r+r^{2}\right)
$$

The volume of a slice of a sphere of radius a and height h from the equatorial plane is

$$
\pi \int_{0}^{h}\left(a^{2}-t^{2}\right) d t=\pi\left[a^{2} h-h^{3} / 3\right] .
$$

The portion of the larger sphere included within the frustum has volume

$$
\begin{aligned}
\frac{2 \pi R^{3}}{3} & -\pi\left[R^{3}\left(\frac{R-r}{R+r}\right)-\frac{R^{3}}{3}\left(\frac{R-r}{R+r}\right)^{3}\right] \\
& =\frac{\pi R^{3}}{3}\left[2-3\left(\frac{R-r}{R+r}\right)+\left(\frac{R-r}{R+r}\right)^{3}\right] \\
& =\frac{\pi R^{3}}{3(R+r)^{3}}\left[4 r^{3}+12 R r^{2}\right]=\frac{4 \pi R^{2} r^{2}}{3(R+r)^{3}}\left[R r+3 R^{2}\right]
\end{aligned}
$$

and the portion of the smaller sphere included within the frustum has volume

$$
\frac{2 \pi r^{3}}{3}+\pi\left[r^{3}\left(\frac{R-r}{R+r}\right)-\frac{r^{3}}{3}\left(\frac{R-r}{R+r}\right)^{3}\right]=\frac{4 \pi R^{2} r^{2}}{3(R+r)^{3}}\left[R r+3 r^{2}\right]
$$

Hence, the portions of the sphere lying within the frustum have total volume

$$
\frac{4 \pi R^{2} r^{2}}{3(R+r)^{3}}\left[3 R^{2}+2 R r+3 r^{2}\right]
$$

Subtracting this from the volume of the frustum yields the volume of the ring-shaped region

$$
\frac{4 \pi R^{2} r^{2}}{3(R+r)^{3}}\left[\left(4 R^{2}+4 R r+4 r^{2}\right)-\left(3 R^{2}+2 R r+3 r^{2}\right)\right]=\frac{4 \pi R^{2} r^{2}}{3(R+r)^{3}}\left[R^{2}+2 R r+r^{2}\right]=\frac{4 \pi R^{2} r^{2}}{3(R+r)} .
$$

Comment. The volume of a slice of a sphere of radius a and height h from the equatorial plane can be obtained from the volume of a right circular cone and a cylinder using the method of Cavalieri. The area of a cross-section of the slice at height t from the equator is $\pi\left(a^{2}-t^{2}\right)=\pi a^{2}-\pi t^{2}$. The term πa^{2} represents the cross-section of a cylinder of radius a and height h while πt^{2} represents the area of the cross section of a cone of base radius h at distance t from the vertex. Thus the area of the each cross-section of the cylinder is the sum of the areas of the corresponding cross-sections of the spherical slice and cone. Cavalieri's principle says that the volumes of the solids bear the same relation. Thus the volume of the spherical slice is

$$
\pi a^{2} h-\frac{1}{3} \pi h^{3}
$$

636. Let $A B C$ be a triangle. Select points D, E, F outside of $\triangle A B C$ such that $\triangle D B C, \triangle E A C, \triangle F A B$ are all isosceles with the equal sides meeting at these outside points and with $\angle D=\angle E=\angle F$. Prove that the lines $A D, B E$ and $C F$ all intersect in a common point.

Solution. Let $A D$ and $B C$ intersect at $P, a_{1}=|C P|, a_{2}=|B P|, \alpha_{1}=\angle C D P, \alpha_{2}=\angle B D P$. Let $B E$ and $A C$ intersect at $Q, b_{1}=|A Q|, b_{2}=|C Q|, \beta_{1}=\angle A E Q, \beta_{2}=\angle C E Q$. Let $C F$ and $A B$ intersect at R, $c_{1}=|B R|, c_{2}=|A R|, \gamma_{1}=\angle B F R, \gamma_{2}=\angle A F R$.

Applying the Law of Sines to $\triangle B P D$ and $\triangle C P D$, we find that

$$
\frac{a_{1}}{\sin \alpha_{1}}=\frac{a_{2}}{\sin \alpha_{2}}
$$

and similarly that

$$
\frac{b_{1}}{\sin \beta_{1}}=\frac{b_{2}}{\sin \beta_{2}} \quad \text { and } \quad \frac{c_{1}}{\sin \gamma_{1}}=\frac{c_{2}}{\sin \gamma_{2}}
$$

Let $\alpha=\angle B A E$. Then $\alpha=\angle F A C$ since $\angle F A B=\angle E A C$. Similarly, let $\beta=\angle F B C=\angle A B D$ and $\gamma=\angle B C E=\angle A C D$.

Let $|A B|=c,|B C|=a,|A C|=b,|A D|=u,|B E|=v,|C F|=w$. By the Law of Sines, we find that

$$
\frac{v}{\sin \alpha}=\frac{c}{\sin \beta_{1}} \quad \text { and } \quad \frac{v}{\sin \gamma}=\frac{a}{\sin \beta_{2}}
$$

so that

$$
\frac{c \sin \alpha}{\sin \beta_{1}}=\frac{a \sin \gamma}{\sin \beta_{2}} \Longrightarrow \frac{\sin \beta_{1}}{\sin \beta_{2}}=\frac{c}{a} \cdot \frac{\sin \alpha}{\sin \gamma}
$$

Similarly

$$
\frac{\sin \alpha_{1}}{\sin \alpha_{2}}=\frac{b}{c} \cdot \frac{\sin \gamma}{\sin \beta} \quad \text { and } \quad \frac{\sin \gamma_{1}}{\sin \gamma_{2}}=\frac{a}{b} \cdot \frac{\sin \beta}{\sin \alpha} .
$$

Putting this altogether yields

$$
\frac{a_{1}}{a_{2}} \cdot \frac{b_{1}}{b_{2}} \cdot \frac{c_{1}}{c_{2}}=\frac{\sin \alpha_{1}}{\sin \alpha_{2}} \cdot \frac{\sin \beta_{1}}{\sin \beta_{2}} \cdot \frac{\sin \gamma_{1}}{\sin \gamma_{2}}=\frac{b}{c} \cdot \frac{c}{a} \cdot \frac{a}{b} \cdot \frac{\sin \gamma}{\sin \beta} \cdot \frac{\sin \alpha}{\sin \gamma} \cdot \frac{\sin \beta}{\sin \alpha}=1
$$

By the converse of Ceva's Theorem, the cevians $A P, B Q$ and $C R$ are concurrent and the result follows.
637. Let n be a positive integer. Determine how many real numbers x with $1 \leq x<n$ satisfy

$$
x^{3}-\left\lfloor x^{3}\right\rfloor=(x-\lfloor x\rfloor)^{3} .
$$

Solution 1. Let $n-1 \leq x<n$. Then $\left\lfloor x^{3}\right\rfloor=(n-1)^{3}+r$ for $0 \leq r<3 n(n-1)$. The equation is equivalent to

$$
\left\lfloor x^{3}\right\rfloor=\lfloor x\rfloor^{3}+3 x\lfloor x\rfloor(x-\lfloor x\rfloor)=(n-1)^{3}+3 x(n-1)(x-n+1) .
$$

The increasing function $(n-1)^{3}+3 x(n-1)(x-n+1)$ takes the value 0 when $x=n-1$ and $3 n(n-1)$ when $x=n$. Therefore, on the interval $[n-1, n)$, it assumes each of the values $0,1, \cdots, 3 n(n-1)-1$ exactly once.

For $0 \leq r<3 n(n-1)$, consider the equation

$$
r=3 x(n-1)(x-n+1)
$$

This is equivalent to

$$
\begin{aligned}
(n-1)^{3}+r & =(n-1)^{3}-3 x(n-1)^{2}+3 x^{2}(n-1) \\
& =[(n-1)-x]^{3}+x^{3}
\end{aligned}
$$

When x is a solution of this equation for which $n-1 \leq x<n$, we have that $x^{3} \leq(n-1)^{3}+r$ and

$$
x^{3}=(n-1)^{3}+r+[x-(n-1)]^{3}<(n-1)^{3}+r+1
$$

so that $\left\lfloor x^{3}\right\rfloor=(n-1)^{3}+r_{i}$ It follows that for each value of these values of r, the given equation is satisfied and so there are $3 n(n-1)$ solutions x for which $n-1 \leq x<n$.

Therefore, the total number of solutions not exceeding n is

$$
\sum_{k=2}^{n} 3 k(k-1)=\sum_{k=2}^{n} k^{3}-(k-1)^{3}-1=n^{3}-1-(n-1)=n^{3}-n
$$

Solution 2. Consider the behaviour of the two sides of the equation on the half-open interval defined by $k \leq x<k+1$ for k a nonnegative integer. The function on the right increases continuously from 0 with right limit equal to 1 . The function on the left increases continuously in the same way on each half-open interval defined by $\sqrt[3]{i} \leq x<\sqrt[3]{i+1}$ for $k^{3} \leq i \leq(k+1)^{3}-1=k^{3}+3 k(k+1)$. By examining the graphs,
we see that they take equal values exactly once in each of the smaller intervals except the rightmost. Thus, they are equal $(k+1)^{3}-k^{3}-1$ times. Therefore, over the whole of the interval defined by $1 \leq x<n^{3}$, they are equal exactly

$$
\sum_{k=1}^{n-1}\left[(k+1)^{3}-k^{3}-1\right]=n^{3}-1^{3}-(n-1)=n^{3}-n
$$

times, so that the given equation has this many solutions.
Solution 3. Let $x=k+r$, where k is a nonnegative integer and $0 \leq r<1$. Then

$$
x^{3}-\left\lfloor x^{3}\right\rfloor=(k+r)^{3}-\left(k^{3}+\left\lfloor 3 k r(k+r)+r^{3}\right\rfloor\right)
$$

so that the equation becomes

$$
3 k r(k+r)=\left\lfloor 3 k r(k+r)+r^{3}\right\rfloor .
$$

This is equivalent to the assertion that $3 k r(k+r)$ is an integer, so there is a solution to the equation for every x for which $3 k r(k+r)$ is an integer, where $0 \leq k \leq n-1$ and $0 \leq r<1$.

Fix k. As r increases from 0 towards but not equal to $1,3 k r(k+r)$ increases from 0 up to but not including $3 k(k+1)$, so it assumes exactly $3 k(k+1)$ integer values. Hence the total number of solutions is

$$
\sum_{k=0}^{n-1} 3 k(k+1)=n^{3}-n
$$

638. Let x and y be real numbers. Prove that

$$
\max (0,-x)+\max (1, x, y)=\max (0, x-\max (1, y))+\max (1, y, 1-x, y-x)
$$

where $\max (a, b)$ is the larger of the two numbers a and b.
Solution 1. [C. Deng] First, note that for real a, b, c, d,

$$
\begin{gathered}
\max (a, b)-c=\max (a-c, b-c) \\
\max (\max (a, b), c)=\max (a, b, c) \\
\max (a, b)+\max (c, d)=\max (a+c, a+d, b+c, b+d) .
\end{gathered}
$$

[Establish these equations.] Then

$$
\begin{aligned}
\max (0,-x) & =\max (0,-x)+\max (1, y)-\max (1, y) \\
& =\max (1, y, 1-x, y-x)-\max (1, y)
\end{aligned}
$$

and

$$
\begin{aligned}
\max (1, x, y) & =\max (1, x, y)-\max (1, y)+\max (1, y) \\
& =\max (\max (1, y), x)-\max (1, y)+\max (1, y) \\
& =\max (\max (1, y)-\max (1, y), x-\max (1, y))+\max (1, y) \\
& =\max (0, x-\max (1, y))+\max (1, y)
\end{aligned}
$$

Adding these equations yields the desired result.
Solution 2. If $0 \leq x \leq 1$, then $-x \leq 0, x-\max (1, y) \leq x-1 \leq 0,1-x \leq 1, y-x \leq y$, so that both sides are equal to $\max (1, y)$. If $x \leq 0$, then $\max (0,-x)=-x, \max (1, x, y)=\max (1, y), \max (0, x-\max (1, y))=0$ and $1-x \geq 1, y-x \geq y$, so that

$$
\max (1, y, 1-x, y-x)=\max (1-x, y-x)=\max (1, y)-x
$$

which is the same as the left side.
Suppose that $x \geq 1$. Then the left side is equal to $0+\max (x, y)=\max (x, y)$. When $y \leq 1$, the right side becomes $(x-1)+1=x=\max (x, y)$. When $1 \leq y \leq x$, the right side becomes $x-y+y=x=\max (x, y)$. When $x \leq y$, the right side is $0+y=\max (x, y)$. Thus, the result holds in all cases.
639. (a) Let $A B C D E$ be a convex pentagon such that $A B=B C$ and $\angle B C D=\angle E A B=90^{\circ}$. Let X be a point inside the pentagon such that $A X$ is perpendicular to $B E$ and $C X$ is perpendicular to $B D$. Show that $B X$ is perpendicular to $D E$.
(b) Let N be a regular nonagon, i.e., a regular polygon with nine edges, having O as the centre of its circumcircle, and let $P Q$ and $Q R$ be adjacent edges of N. The midpoint of $P Q$ is A and the midpoint of the radius perpendicular to $Q R$ is B. Determine the angle between $A O$ and $A B$.
(a) Solution 1. Let $A X$ intersect $B E$ in $Y, C E$ intersect $B D$ in Z and $B X$ intersect $D E$ in P. Assume X lies inside the triangle $B D E$; a similar proof holds when X lies outside the triangle $B D E$. From similar right triangles and since $A B=A C$, we have that

$$
B Y \cdot B E=A B^{2}=A C^{2}=B Z \cdot B D
$$

Hence triangles $B Y Z$ and $B D E$ are similar and $\angle B Y Z=\angle B D E$ and $\angle B Z Y=\angle B E D$. Thus the quadrilateral $D E Y Z$ is concyclic.

The quadrilateral $B Y X Z$ is also concyclic, so that $\angle B Z Y=\angle B X Y$. Therefore $\angle B E D=\angle B X Y$, with the result that triangles $B X Y$ and $B E P$ are similar. Hence $\angle E P B=\angle X Y B=90^{\circ}$.

Solution 2. [K. Zhou, J. Lei] Let T be selected on $D E$ so that $B T \perp E D$. Let $A Y$ meet $B T$ at S and $C Z$ meet $B T$ at R. Because triangles $B S Y$ and $B E T$ are similar, $B Y: B R=B T: B E$, so that $B R \cdot B T=B Y \cdot B E=A B^{2}$. Similarly, $B S \cdot B T=B Z \cdot B D=A C^{2}=A B^{2}$. Hence $B R=B S$ so that $R=S$. So R and S must be the point X where $A Y$ and $C Z$ meet and so T is none other than P. The result follows.
(b) Answer: $\angle O A B=30^{\circ}$.

Solution 1. [S. Sun] Let C be the point on $O R$ for $B C \perp O R$. Since $\angle B O C=\angle Q O A=20^{\circ}$, the right triangles $B O C$ and $Q O A$ are similar, Since $Q O=2 O B$, it follows that $A O=2 O C$.

Consider the triangle $A O C$. We have $A O=2 O C$ and $\angle A O C=60^{\circ}$. By splitting an equilateral triangle along a median, it is possible to construct a triangle $U V W$ for which $A O=U V=2 V W$ and $\angle U V W=60^{\circ}$. Since also $V W=O C$, triangles $A O C$ and $U V W$ are congruent (SAS), so that $\angle O C A=\angle V W U=90^{\circ}$. Therefore, A, B, C are collinear, and $\angle O A B=\angle O A C=\angle U W V=30^{\circ}$.

Solution 2. Let C be the intersection of the radius perpendicular to $Q R$ and the circumcircle of N. We have that $\angle P O Q=\angle Q O R=40^{\circ}$. Thus, triangle $O P C$ is equilateral, so that $P B$ and $O C$ are perpendicular. Since also $\angle O A P=90^{\circ}, A$ and B lie on the circle with diameter $O P$, Hence $\angle O A B=\angle O P B=30^{\circ}$.

Solution 3. [D. Brox] $O A=r \sin 70^{\circ}$ and $O D=\frac{r}{2} \cos 40^{\circ}$, where r is the circumradius of the nonagon and D is the foot of the perpendicular from B to $O A$. Hence

$$
A D=r\left(\sin 70^{\circ}-\sin 30^{\circ} \cos 40^{\circ}\right)=r \sin 40^{\circ} \cos 30^{\circ}
$$

Therefore

$$
\tan \angle O A B=\frac{B D}{A D}=\frac{O D \tan 40^{\circ}}{A D}=\frac{\cos 40^{\circ} \tan 40^{\circ}}{2 \sin 40^{\circ} \cos 30^{\circ}}=\frac{1}{2 \cos 30^{\circ}}=\frac{1}{\sqrt{3}},
$$

whence $\angle O A B=30^{\circ}$.
Solution 4. [H. Dong] Let E be the midpoint of $O P$ so that triangle $O E B$ is equilaterial.

$$
E B=E P \Longrightarrow \angle E P B=\angle E B P=30^{\circ} \Longrightarrow \angle O B P=30^{\circ}
$$

Hence $O B A P$ is concyclic, so that $\angle O A B=\angle O P B=30^{\circ}$.
Solution 5. [D. Arthur] $O B=\frac{1}{2} O P=O P \cos 60^{\circ}=O P \cos \angle P Q B$ so that $P B \perp O C$. Thus $O P A B$ is concyclic. Since $\angle O B A=180^{\circ}-\angle O P A=180^{\circ}-70^{\circ}=110^{\circ}$, then

$$
\angle O A B=180^{\circ}-(\angle A O B+\angle O B A)=180^{\circ}-\left(40^{\circ}+110^{\circ}\right)=30^{\circ} .
$$

Solution 6. [F. Espinosa] $|\overrightarrow{O B}|=\frac{r}{2}$ and $|\overrightarrow{O A}|=r \cos 20^{\circ}$. Then $\overrightarrow{O R} \cdot \overrightarrow{O B}=\frac{1}{2} r^{2} \cos 20^{\circ}$ and $\overrightarrow{O R} \cdot \overrightarrow{O A}=$ $r\left(r \cos 20^{\circ}\right) \cos 60^{\circ}=\frac{1}{2} r^{2} \cos 20^{\circ}$. Hence $\overrightarrow{O R} \cdot \overrightarrow{A B}=$ overrightarrow $O R \cdot \overrightarrow{O B}-$ overrightarrow $O R \cdot \overrightarrow{O A}=0$ with the result that $\angle A B O=90^{\circ}$. As before, it follows that $\angle O A B=30^{\circ}$.

Solution 7. [T. Costin] Let F be the midpoint of the side $S T$ of the nonagon $P Q R S T \cdots$. Then $\angle A O F=120^{\circ}$, so $\angle O A G=30^{\circ}$ and $\angle O G A=90^{\circ}$, where G is the intersection point of $A F$ and $O R$. Hence $O G=\frac{1}{2} O A$.

Let H be the intersection of $A P$ and $O C$, with C the midpoint of $R S$. Then $O G=O H \cos 20^{\circ}$. Also $O A=O Q \cos 20^{\circ}=O R \cos 20^{\circ}$. Hence

$$
O H=\frac{O G}{\cos 20^{\circ}}=\frac{O A}{2 \cos 20^{\circ}}=\frac{O R}{2}
$$

so that $H=B$. Hence $\angle O A B=\angle O A H=30^{\circ}$.

