Solutions

626. Let $A B C$ be an isosceles triangle with $A B=A C$, and suppose that D is a point on the side $B C$ with $B C>B D>D C$. Let $B E$ and $C F$ be diameters of the respective circumcircles of triangles $A B D$ and $A D C$, and let P be the foot of the altitude from A to $B C$. Prove that $P D: A P=E F: B C$.

Solution 1. Since angles $B D E$ and $C D F$ are both right, E and F both lie on the perpendicular to $B C$ through D. Since $A B D E$ and $A D C F$ are concyclic,

$$
\angle A E F=\angle A B D=\angle A B C=\angle A C B=\angle A C D=\angle A F D=\angle A F E
$$

Therefore triangles $A E F$ and $A B C$ are similar. Thus $A E F$ is isosceles and its altitude through A is perpendicular to $D E F$ and parallel to $B C$, so that it is equal to $P D$. Therefore, from the similarity, $P D: A P=E F: B C$, as desired.

Solution 2. Since the chord $A D$ subtends the same angle $(\angle A B C=\angle A C B)$ in circles $A B D$ and $A C D$, these circles must have equal diameters. The rotation with centre A that takes B to C takes the circle $A B D$ to a circle with chord $A C$ of equal diameter. The angle subtended at D by $A B$ on the circumcircle of $A B D$ is the supplement of the angle subtended at D by $A C$ on the circumcircle of $A C D$. Therefore, this image circle must be the circle $A C D$. Therefore the diameter $B E$ is carried to the diameter $C F$, and E is carried to F. Hence $A E=A F$ and $\angle B A C=\angle E A F$. Thus, triangles $A B C$ and $A E F$ are similar.

Now consider the composite of a rotation about A through a right angle followed by a dilatation of factor $|A E| /|A B|$. This transformation take B to E and C to F, and therefore the altitude $A P$ to the altitude $A M$ of triangle $A E F$ which is therefore parallel to $B C$. Since D lies on the circumcircle of $A B D$ with diameter $B E, \angle B D E=90^{\circ}$. Similarly, $\angle C D F=90^{\circ}$. Hence $A M D P$ is a rectangle and $A M=P D$. The result follows from the similarity of triangles $A B C$ and $A E F$.
627. Let

$$
f(x, y, z)=2 x^{2}+2 y^{2}-2 z^{2}+\frac{7}{x y}+\frac{1}{z}
$$

There are three pairwise distinct numbers a, b, c for which

$$
f(a, b, c)=f(b, c, a)=f(c, a, b) .
$$

Determine $f(a, b, c)$. Determine three such numbers a, b, c.
Solution. Suppose that a, b, c are pairwise distinct and $f(a, b, c)=f(b, c, a)=f(c, a, b)$. Then

$$
2 a^{2}+2 b^{2}-2 c^{2}+\frac{7}{a b}+\frac{1}{c}=2 b^{2}+2 c^{2}-2 a^{2}+\frac{7}{b c}+\frac{1}{a}
$$

so that

$$
4\left(a^{2}-c^{2}\right)=\left(\frac{1}{a}-\frac{1}{c}\right)\left(1-\frac{7}{b}\right)=\frac{1}{a b c}(c-a)(b-7) .
$$

Therefore $4 a b c(a+c)=7-b$. Similarly, $4 a b c(b+a)=7-c$. Subtracting these equations yields that $4 a b c(c-b)=c-b$ so that $4 a b c=1$. It follows that $a+b+c=7$.

Therefore

$$
\begin{aligned}
f(a, b, c) & =2\left(a^{2}+b^{2}\right)-2 c^{2}+28 c+4 a b \\
& =2(a+b)^{2}-2 c^{2}+28 c=2(7-c)^{2}-2 c^{2}+28 c \\
& =98-28 c+2 c^{2}-2 c^{2}+28 c=98
\end{aligned}
$$

We can find such triples by picking any nonzero value of c and solving the quadratic equation $t^{2}-(7-$ $c) t+(1 / 4 c)=0$ for a and b. For example, taking $c=1$ yields the triple

$$
(a, b, c)=\left(\frac{6+\sqrt{35}}{2}, \frac{6-\sqrt{35}}{2}, 1\right)
$$

628. Suppose that $A P, B Q$ and $C R$ are the altitudes of the acute triangle $A B C$, and that

$$
9 \overrightarrow{A P}+4 \overrightarrow{B Q}+7 \overrightarrow{C R}=\vec{O}
$$

Prove that one of the angles of triangle $A B C$ is equal to 60°.
Solution 1. [H. Spink] Since the sum of the three vectors $9 \overrightarrow{A P}, 4 \overrightarrow{B Q}, 7 \overrightarrow{C R}$ is zero, there is a triangle whose sides have lengths $9|A P|, 4|B Q|, 7|C R|$ and are parallel to the corresponding vectors.

Where H is the orthocentre, we have that

$$
\angle B H P=90^{\circ}-\angle Q B C=\angle A C B
$$

so that the angle between the vectors $\overrightarrow{A P}$ and $\overrightarrow{B Q}$ is equal to angle $A C B$. Similarly, the angle between vectors $\overrightarrow{B Q}$ and $\overrightarrow{C R}$ is equal to angle $B A C$. It follows that the triangle formed by the vectors is similar to triangle $A B C$ and

$$
|A B|: 7|C R|=|B C|: 9|A P|=|C A|: 4|B Q| .
$$

Since twice the area of the triangle $A B C$ is equal to

$$
|A B| \times|C R|=|B C| \times|A P|=|C A| \times|B Q|
$$

we have that (with conventional notation for side lengths)

$$
\frac{c^{2}}{7}=\frac{a^{2}}{9}=\frac{b^{2}}{4}
$$

so that $a: b: c=3: 2: \sqrt{7}$.
If one angle of the triangle is equal to 60° we would expect it to be neither the largest nor the smallest. Accordingly, we compute the cosine of angle $A C B$, namely

$$
\frac{a^{2}+b^{2}-c^{2}}{2 a b}=\frac{9+4-7}{2 \times 3 \times 2}=\frac{6}{12}=\frac{1}{2} .
$$

Therefore $\angle A C B=60^{\circ}$.
Solution 2. Let the angles of the triangle be $\alpha=\angle B A C, \beta=\angle C B A$ and $\gamma=\angle A C B$; let p, q, r be the respective magnitudes of vectors $\overrightarrow{A P}, \overrightarrow{B Q}, \overrightarrow{C R}$. Taking the dot product of the vector equation with $\overrightarrow{B C}$ and noting that $\angle Q B C=90-\gamma$ and $\angle B C R=90-\beta$, we find that $4 q \sin \gamma=7 r \sin \beta$. Similarly, $9 p \sin \gamma=7 r \sin \alpha$ and $9 p \sin \beta=4 q \sin \alpha$. Using the conventional notation for the sides of the triangle, we have that

$$
a: b: c=\sin \alpha: \sin \beta: \sin \gamma=9 p: 4 q: 7 r .
$$

However, we also have that twice the area of triangle $A B C$ is equal to $a p=b q=c r$, so that $a: b: c=$ $(1 / p):(1 / q):(1 / r)$. Therefore $9 p^{2}=4 q^{2}=7 r^{2}=k$, for some constant k. Therefore

$$
\begin{aligned}
\cos \angle A C B & =\frac{a^{2}+b^{2}-c^{2}}{2 a b}=\frac{81 p^{2}+16 q^{2}-49 r^{2}}{72 p q} \\
& =\frac{9 k+4 k-7 k}{12 k}=\frac{1}{2}
\end{aligned}
$$

from which it follows that $\angle C=60^{\circ}$.
Solution 3. [C. Deng] Observe that

$$
|B Q|=|B C| \cos \angle Q B C=|B C| \angle \sin A C B
$$

$$
|C R|=|B C| \cos \angle R C B=|B C| \sin \angle A B C .
$$

Resolving in the direction of $\overrightarrow{B C}$, we find from the given equation that

$$
\begin{gathered}
4|B C| \cos ^{2} \angle Q B C=4|B Q| \cos \angle Q B C=7|C R| \cos \angle R C B=7|B C| \cos ^{2} \angle R C B \\
\Longrightarrow 4 \sin ^{2} \angle A C B=7 \sin ^{2} \angle A B C .
\end{gathered}
$$

By the Law of Sines, $A C: A B=\sin \angle A B C: \sin \angle A C B=2: \sqrt{7}$. Similarly $A C: B C=2: 3$, so that $C A: A B: B C=2: \sqrt{7}: 3$. The cosine of angle $A C B$ is equal to $(4+9-7) / 12=1 / 2$, so that $\angle A C B=60^{\circ}$.
629. (a) Let $a>b>c>d>0$ and $a+d=b+c$. Show that $a d<b c$.
(b) Let a, b, p, q, r, s be positive integers for which

$$
\frac{p}{q}<\frac{a}{b}<\frac{r}{s}
$$

and $q r-p s=1$. Prove that $b \geq q+s$.
(a) Solution 1. Since $c=a+d-b$, we have that

$$
b c-a d=b(a+d-b)-a d=(a-b) b-(a-b) d=(a-b)(b-d)>0 .
$$

Solution 2. Let $a+d=b+c=u$. Then

$$
b c-a d=b(u-b)-(u-d) d=u(b-d)-\left(b^{2}-d^{2}\right)=(b-d)(u-b-d) .
$$

Now $u=b+c>b+d$, so that $u-b-d>0$ as well as $b-d>0$. Hence $b c-a d>0$ as desired.
Solution 3. Let $x=a-b>0$. Since $a-b=c-d$, we have that $a=b+x$ and $d=c-x$. Hence

$$
b c-a d=b c-(b+x)(c-x)=b x-c x+x^{2}=x^{2}+x(b-c)>0 .
$$

Solution 4. Since $\sqrt{a}>\sqrt{b}>\sqrt{c}>\sqrt{d}, \sqrt{a}-\sqrt{d}>\sqrt{b}-\sqrt{c}$. Squaring and using $a+d=b+c$ yields $2 \sqrt{b c}>2 \sqrt{a d}$, whence the result.
(b) Solution. Since all variables represent integers,

$$
a q-b p>0, b r-a s>0 \Longrightarrow a q-b p \geq 1, b r-a s \geq 1 .
$$

Therefore

$$
b=b(q r-p s)=q(b r-a s)+s(a q-b p) \geq q+s .
$$

630. (a) Show that, if

$$
\frac{\cos \alpha}{\cos \beta}+\frac{\sin \alpha}{\sin \beta}=-1
$$

then

$$
\frac{\cos ^{3} \beta}{\cos \alpha}+\frac{\sin ^{3} \beta}{\sin \alpha}=1 .
$$

(b) Give an example of numbers α and β that satisfy the condition in (a) and check that both equations hold.
(a) Solution 1. Let

$$
\lambda=\frac{\cos \beta}{\cos \alpha} \quad \text { and } \quad \mu=\frac{\sin \beta}{\sin \alpha} .
$$

Since $\lambda^{-1}+\mu^{-1}=-1$, we have that $\lambda+\mu=-\lambda \mu$. Now

$$
1=\cos ^{2} \beta+\sin ^{2} \beta=\lambda^{2} \cos ^{2} \alpha+\mu^{2} \sin ^{2} \alpha=\lambda^{2}+\left(\mu^{2}-\lambda^{2}\right) \sin ^{2} \alpha=\lambda^{2}-(\mu-\lambda) \lambda \mu \sin ^{2} \alpha
$$

Hence

$$
\begin{aligned}
\frac{\cos ^{3} \beta}{\cos \alpha}+\frac{\sin ^{3} \beta}{\sin \alpha} & =\lambda^{3} \cos ^{2} \alpha+\mu^{3} \sin ^{2} \alpha \\
& =\lambda\left(\lambda^{2} \cos ^{2} \alpha+\mu^{2} \sin ^{2} \alpha\right)+(\mu-\lambda) \mu^{2} \sin ^{2} \alpha \\
& =\lambda+(\mu-\lambda) \mu^{2} \sin ^{2} \alpha \\
& =\frac{1}{\lambda}\left[\lambda^{2}+\left(\lambda^{2}-1\right) \mu\right] \\
& =\frac{1}{\lambda}\left[\lambda^{2}+\lambda^{2} \mu+\lambda+\lambda \mu\right. \\
& =\lambda+\lambda \mu+1+\mu=1
\end{aligned}
$$

Solution 2. [M. Boase]

$$
\begin{gather*}
\frac{\cos \alpha}{\cos \beta}+\frac{\sin \alpha}{\sin \beta}=-1 \Longrightarrow \\
\sin (\alpha+\beta)+\sin \beta \cos \beta=0 \tag{*}
\end{gather*}
$$

Therefore

$$
\begin{aligned}
\frac{\cos ^{3} \beta}{\cos \alpha}+\frac{\sin ^{3} \beta}{\sin \alpha} & =\frac{\cos \beta\left(1-\sin ^{2} \beta\right)}{\cos \alpha}+\frac{\sin \beta\left(1-\cos ^{2} \beta\right)}{\sin \alpha} \\
& =\frac{\cos \beta}{\cos \alpha}+\frac{\sin \beta}{\sin \alpha}-\sin \beta \cos \beta\left(\frac{\sin \beta}{\cos \alpha}+\frac{\cos \beta}{\sin \alpha}\right) \\
& =\frac{\sin (\alpha+\beta)}{\cos \alpha \sin \alpha}-\frac{\cos \beta \sin \beta(\cos (\alpha-\beta))}{\cos \alpha \sin \alpha} \\
& =\frac{-2 \sin \beta \cos \beta+2 \sin (\alpha+\beta) \cos (\alpha-\beta)}{2 \sin \alpha \cos \alpha} \quad \text { using } \quad(*) \\
& =\frac{-2 \sin \beta \cos \beta+[\sin 2 \alpha+\sin 2 \beta]}{\sin 2 \alpha}=1
\end{aligned}
$$

since $2 \sin \beta \cos \beta=\sin 2 \beta$.
Solution 3. [A. Birka] Let $\cos \alpha=x$ and $\cos \beta=y$. Then

$$
\frac{\sin \alpha}{\sin \beta}= \pm \sqrt{\frac{1-x^{2}}{1-y^{2}}}
$$

Since

$$
\frac{x}{y}+1=\mp \sqrt{\frac{1-x^{2}}{1-y^{2}}}
$$

then

$$
\left(x^{2}+2 x y+y^{2}\right)\left(1-y^{2}\right)=y^{2}\left(1-x^{2}\right)
$$

whence

$$
x^{2}+2 x y=2 x y^{3}+y^{4} .
$$

Thus,

$$
\begin{aligned}
\frac{\cos ^{3} \beta}{\cos \alpha}+\frac{\sin ^{3} \beta}{\sin \alpha} & =\frac{y^{3}}{x} \pm\left(1-y^{2}\right) \sqrt{\frac{1-y^{2}}{1-x^{2}}} \\
& =\frac{y^{3}}{x}-\frac{\left(1-y^{2}\right) y}{x+y}=\frac{y^{4}+2 x y^{3}-x y}{x(x+y)} \\
& =\frac{x^{2}+x y}{x(x+y)}=1
\end{aligned}
$$

Solution 4. [J. Chui] Note that the given equation implies that $\sin 2 \beta=-2 \sin (\alpha+\beta)$ and that the numerator of

$$
\frac{\cos \alpha}{\cos \beta}+\frac{\sin \alpha}{\sin \beta}+\frac{\cos ^{3} \beta}{\cos \alpha}+\frac{\sin ^{3} \beta}{\sin \alpha}
$$

is one quarter of

$$
\begin{aligned}
4\left[\cos ^{2} \alpha \sin \alpha \sin \beta+\right. & \left.\sin ^{2} \alpha \cos \alpha \cos \beta+\cos ^{4} \beta \sin \alpha \sin \beta+\sin ^{4} \beta \cos \alpha \cos \beta\right] \\
= & 4\left[\cos ^{2} \alpha \sin \alpha \sin \beta+\sin ^{2} \alpha \cos \alpha \cos \beta+\left(\cos ^{2} \beta-\cos ^{2} \beta \sin ^{2} \beta\right) \sin \alpha \sin \beta\right. \\
& \left.\quad+\left(\sin ^{2} \beta-\sin ^{2} \beta \cos ^{2} \beta\right) \cos \alpha \cos \beta\right] \\
= & \left(4 \cos ^{2} \alpha+4 \cos ^{2} \beta-\sin ^{2} 2 \beta\right) \sin \alpha \sin \beta+\left(4 \sin ^{2} \alpha+4 \sin ^{2} \beta-\sin ^{2} 2 \beta\right) \cos \alpha \cos \beta \\
= & 2 \sin 2 \alpha \cos \alpha \sin \beta+2 \sin 2 \beta \cos \beta \sin \alpha+2 \sin 2 \alpha \sin \alpha \cos \beta+2 \sin 2 \beta \cos \alpha \sin \beta \\
& \quad-\sin ^{2} 2 \beta(\cos \alpha \cos \beta+\sin \alpha \sin \beta) \\
= & 2(\sin 2 \alpha+\sin 2 \beta) \sin (\alpha+\beta)-\sin ^{2} 2 \beta \cos (\alpha-\beta) \\
= & 2 \sin (\alpha+\beta)[\sin 2 \alpha+\sin 2 \beta-2 \sin (\alpha+\beta) \cos (\alpha-\beta)]=0
\end{aligned}
$$

since

$$
\sin 2 \alpha+\sin 2 \beta=\sin (\overline{\alpha+\beta}+\overline{\alpha-\beta})+\sin (\overline{\alpha+\beta}-\overline{\alpha-\beta})
$$

Solution 5. [A. Tang] From the given equation, we have that

$$
\begin{gathered}
\sin (\alpha+\beta)=-\sin \beta \cos \beta \\
\frac{\cos \beta}{\cos \alpha}=\frac{-\sin \beta}{\sin \alpha+\sin \beta}
\end{gathered}
$$

and

$$
\frac{\sin \beta}{\sin \alpha}=\frac{-\cos \beta}{\cos \alpha+\cos \beta}
$$

Hence

$$
\begin{aligned}
\frac{\cos ^{3} \beta}{\cos \alpha}+\frac{\sin ^{3} \beta}{\sin \alpha} & =\cos ^{2} \beta\left[\frac{-\sin \beta}{\sin \alpha+\sin \beta}\right]+\sin ^{2} \beta\left[\frac{-\cos \beta}{\cos \alpha+\cos \beta}\right] \\
& =-\frac{\sin \beta \cos \beta[\cos \alpha \cos \beta+\sin \alpha \sin \beta+1]}{4 \sin \frac{1}{2}(\alpha+\beta) \cos \frac{1}{2}(\alpha-\beta) \cos \frac{1}{2}(\alpha+\beta) \cos \frac{1}{2}(\alpha-\beta)} \\
& =\frac{\sin (\alpha+\beta)[\cos (\alpha-\beta)+1]}{\left[2 \sin \frac{1}{2}(\alpha+\beta) \cos \frac{1}{2}(\alpha+\beta)\right]\left[2 \cos ^{2} \frac{1}{2}(\alpha-\beta)\right]}=1 .
\end{aligned}
$$

Solution 6. [D. Arthur] The given equations yield $2 \sin (\alpha+\beta)=-\sin 2 \beta, \cos \alpha \sin \beta=-\cos \beta(\sin \alpha+$ $\sin \beta)$ and $\sin \alpha \cos \beta=-\sin \beta(\cos \alpha+\cos \beta)$. Hence

$$
\begin{aligned}
\frac{\cos ^{3} \beta}{\cos \alpha}+\frac{\sin ^{3} \beta}{\sin \alpha} & =\frac{\cos ^{2} \beta(\cos \beta \sin \alpha)+\sin ^{2} \beta(\sin \beta \cos \alpha)}{\cos \alpha \sin \alpha} \\
& =\frac{-\cos ^{2} \beta \sin \beta(\cos \alpha+\cos \beta)-\sin ^{2} \beta \cos \beta(\sin \alpha+\sin \beta)}{\cos \alpha \sin \alpha} \\
& =\frac{-\cos \beta \sin \beta\left(\cos \alpha \cos \beta+\cos ^{2} \beta+\sin \alpha \sin \beta+\sin ^{2} \beta\right)}{\cos \alpha \sin \alpha} \\
& =\frac{-\sin 2 \beta(1+\cos (\alpha-\beta))}{\sin 2 \alpha} \\
& =\frac{-\sin 2 \beta+2 \sin (\alpha+\beta) \cos (\alpha-\beta)}{\sin 2 \alpha} \\
& =\frac{-\sin 2 \beta+\sin 2 \alpha+\sin 2 \beta}{\sin 2 \alpha}=1 .
\end{aligned}
$$

Solution 7. [C. Deng] Let $\sin \beta=x, \cos \beta=y$, and $(\sin \alpha) /(\sin \beta)=c$. Thus, $(\cos \alpha) /(\cos \beta)=-1-c$. We have that

$$
x^{2}+y^{2}=1
$$

and

$$
\left.(c x)^{2}+(-1-c) y\right)^{2}=1
$$

Solving the system yields that

$$
x^{2}=\frac{c^{2}+2 c}{1+2 c}, \quad y^{2}=\frac{1-c^{2}}{1+2 c}
$$

Therefore,

$$
\begin{aligned}
\frac{\sin ^{3} \beta}{\sin \alpha}+\frac{\cos ^{3} \beta}{\cos \alpha} & =\frac{x^{2}}{c}+\frac{y^{2}}{-1-c}=\frac{c^{2}+2 c}{c(2 c+1)}+\frac{1-c^{2}}{(-c-1)(2 c+1)} \\
& =\frac{c+2}{2 c+1}+\frac{c-1}{2 c+1}=1
\end{aligned}
$$

(b) Solution. The given equation is equivalent to $2 \sin (\alpha+\beta)+\sin 2 \beta=0$. Try $\beta=-45^{\circ}$ so that $\sin \left(\alpha-45^{\circ}\right)=\frac{1}{2}$. We take $\alpha=75^{\circ}$. Now

$$
\sin 75^{\circ}=\sin \left(45^{\circ}+30^{\circ}\right)=\frac{1}{\sqrt{2}}\left(\frac{\sqrt{3}+1}{2}\right)
$$

and

$$
\cos 75^{\circ}=\cos \left(45^{\circ}+30^{\circ}\right)=\frac{1}{\sqrt{2}}\left(\frac{\sqrt{3}-1}{2}\right)
$$

It is straightforward to check that both equations hold.
631. The sequence of functions $\left\{P_{n}\right\}$ satisfies the following relations:

$$
\begin{gathered}
P_{1}(x)=x, \quad P_{2}(x)=x^{3}, \\
P_{n+1}(x)=\frac{P_{n}^{3}(x)-P_{n-1}(x)}{1+P_{n}(x) P_{n-1}(x)}, \quad n=1,2,3, \cdots
\end{gathered}
$$

Prove that all functions P_{n} are polynomials.
Solution 1. Taking $x=1,2,3, \cdots$ yields the respective sequences

$$
\{1,1,0,-1,-1,0, \cdots\}, \quad\{2,8,30,112,418,1560, \cdots\}, \quad\{3,27,240,2133, \cdots\}
$$

In each case, we find that

$$
\begin{equation*}
P_{n+1}(x)=x^{2} P_{n}(x)-P_{n-1}(x) \tag{1}
\end{equation*}
$$

for $n=2,3, \cdots$. If we can establish (1) in general, it will follow that all the functions P_{n} are polynomials.
From the definition of P_{n}, we find that

$$
P_{n+1}+P_{n-1}=P_{n}\left(P_{n}^{2}-P_{n+1} P_{n-1}\right)
$$

Therefore, it suffices to establish that $P_{n}^{2}-P_{n+1} P_{n-1}=x^{2}$ for each n. Now, for $n \geq 2$,

$$
\begin{aligned}
{\left[P_{n+1}^{2}-P_{n+2} P_{n}\right] } & -\left[P_{n}^{2}-P_{n+1} P_{n-1}\right]=P_{n+1}\left(P_{n+1}+P_{n-1}\right)-P_{n}\left(P_{n+2}+P_{n}\right) \\
& =P_{n+1} P_{n}\left(P_{n}^{2}-P_{n+1} P_{n-1}\right)-P_{n} P_{n+1}\left(P_{n+1}^{2}-P_{n+2} P_{n}\right) \\
& =-P_{n+1} P_{n}\left[\left(P_{n+1}^{2}-P_{n+2} P_{n}\right)-\left(P_{n}^{2}-P_{n+1} P_{n-1}\right)\right]
\end{aligned}
$$

so that either $P_{n+1}(x) P_{n}(x)+1 \equiv 0$ or $P_{n+1}^{2}-P_{n+2} P_{n}=P_{n}^{2}-P_{n+1} P_{n-1}$. The first identity is precluded by the case $x=1$, where it is false. Hence

$$
P_{n+1}^{2}-P_{n+2} P_{n}=P_{n}^{2}-P_{n+1} P_{n-1}
$$

for $n=2,3, \cdots$. Since $P_{2}^{2}(x)-P_{3}(x) P_{1}(x)=x^{2}$, the result follows.
Solution 2. [By inspection, we make the conjecture that $P_{n}(x)=x^{2} P_{n-1}(x)-P_{n-2}$. Rather than prove this directly from the rather awkward condition on P_{n}, we go through the back door.] Define the sequence $\left\{Q_{n}\right\}$ for $n=0,1,2, \cdots$ by

$$
Q_{0}(x)=0, \quad Q_{1}(x)=x, \quad Q_{n+1}=x^{2} Q_{n}(x)-Q_{n-1}(x)
$$

for $n \geq 1$. It is clear that $Q_{n}(x)$ is a polynomial of degree $2 n-1$ for $n=1,2, \cdots$. We show that $P_{n}(x)=Q_{n}(x)$ for each n.

Lemma: $Q_{n}^{2}(x)-Q_{n+1} Q_{n-1}=x^{2}$ for $n \geq 1$.
Proof: This result holds for $n=1$. Assume that it holds for $n=k-1 \geq 1$. Then

$$
\begin{aligned}
Q_{k}^{2}(x)-Q_{k+1}(x) Q_{k-1}(x) & =Q_{k}^{2}(x)-\left(x^{2} Q_{k}(x)-Q_{k-1}(x)\right) Q_{k-1}(x) \\
& =Q_{k}(x)\left(Q_{k}(x)-x^{2} Q_{k-1}(x)\right)+Q_{k-1}^{2}(x) \\
& =-Q_{k}(x) Q_{k-2}(x)+Q_{k-1}^{2}(x)=x^{2}
\end{aligned}
$$

From the lemma, we find that

$$
\begin{aligned}
& Q_{n+1}(x)+Q_{n-1}(x)+Q_{n+1}(x) Q_{n}(x) Q_{n-1}(x) \\
& =x^{2} Q_{n}(x)+Q_{n+1}(x) Q_{n}(x) Q_{n-1}(x)=Q_{n}(x)\left(x^{2}+Q_{n+1}(x) Q_{n-1}(x)\right)=Q_{n}^{3}(x) \\
& \Longrightarrow Q_{n+1}(x)=\frac{Q_{n}^{3}(x)-Q_{n-1}(x)}{1+Q_{n}(x) Q_{n-1}(x)} \quad(n=1,2, \cdots)
\end{aligned}
$$

We know that $Q_{1}(x)=P_{1}(x)$ and $Q_{2}(x)=P_{2}(x)$. Suppose that $Q_{n}(x)=P_{n}(x)$ for $n=1,2, \cdots, k$. Then

$$
Q_{k+1}(x)=\frac{Q_{k}^{3}(x)-Q_{k-1}(x)}{1+Q_{k}(x) Q_{k-1}(x)}=\frac{P_{k}^{3}(x)-P_{k-1}(x)}{1+P_{k}(x) P_{k-1}(x)}=P_{k+1}(x)
$$

from the definition of P_{k+1}. The result follows.
Comment: It can also be established that $P_{n+1}^{2}+P_{n}^{2}=\left(1+P_{n} P_{n+1}\right) x^{2}$ for each $n \geq 0$.
Solution 3. [I. Panayotov] First note that the sequence $\left\{P_{n}(x)\right\}$ is defined for all values of x, i.e., the denominator $1+P_{n-1}(x) P_{n}(x)$ never vanishes for n and x. Suppose otherwise, and let n be the least number for which there exists u for which $1+P_{n-1}(u) P_{n}(u)=0$. Then $n \geq 3$ and

$$
-1=P_{n-1}(u) P_{n}(u)=\frac{P_{n-1}(u)^{4}-P_{n-1}(u) P_{n-2}(u)}{1+P_{n-1}(u) P_{n-2}(u)}
$$

which implies that $P_{n-1}(u)^{4}=-1$, a contradiction.
We now prove by induction that $P_{n+1}=x^{2} P_{n}-P_{n-1}$. Suppose that $P_{k}=x^{2} P_{k-1}-P_{k-2}$ for $3 \leq k \leq n$, so that in particular we know that P_{k} is a polynomial for $1 \leq k \leq n$. Substituting for P_{k} yields

$$
P_{k-1}^{3}(x)=P_{k-1}(x)\left[x^{2}+x^{2} P_{k-1}(x) P_{k-2}(x)-P_{k-2}^{2}(x)\right]
$$

for all x. If $P_{k-1}(x) \neq 0$, then

$$
P_{k-1}^{2}(x)=x^{2}+x^{2} P_{k-1}(x) P_{k-2}(x)-P_{k-2}^{2}(x)
$$

Both sides of this equation are polynomials and so continuous functions of x. Since the roots of P_{k-1} constitute a finite discreet set, this equation holds when x is one of the roots as well. Now

$$
\begin{aligned}
P_{n+1} & =\frac{P_{n}^{3}-P_{n-1}}{1+P_{n} P_{n-1}}=\frac{P_{n}\left(x^{2} P_{n-1}-P_{n-2}\right)^{2}-P_{n-1}}{1+P_{n} P_{n-1}} \\
& =\frac{P_{n}\left(x^{4} P_{n-1}^{2}-x^{2} P_{n-1} P_{n-2}+x^{2}-P_{n-1}^{2}\right)-P_{n-1}}{1+P_{n} P_{n-1}} \\
& =\frac{P_{n}\left(x^{2} P_{n} P_{n-1}+x^{2}-P_{n-1}^{2}\right)-P_{n-1}}{1+P_{n} P_{n-1}} \quad \text { since } \quad x^{2} P_{n-1}-P_{n-2}=P_{n} \\
& =\frac{\left(x^{2} P_{n}-P_{n-1}\right)\left(1+P_{n} P_{n-1}\right)}{1+P_{n} P_{n-1}}=x^{2} P_{n}-P_{n-1} .
\end{aligned}
$$

The result follows.
632. Let a, b, c, x, y, z be positive real numbers for which $a \leq b \leq c, x \leq y \leq z, a+b+c=x+y+z$, $a b c=x y z$, and $c \leq z$, Prove that $a \leq x$.

Solution. Let

$$
p(t)=(t-a)(t-b)(t-c)=t^{3}-(a+b+c) t^{2}+(a b+b c+c a) t-a b c
$$

and

$$
q(t)=(t-x)(t-y)(t-z)=t^{3}-(x+y+z) t^{2}+(x y+y z+z x) t-x y z
$$

Then $p(t)-q(t)=(a b+b c+c a-x y-y z-z x) t$ never changes sign for positive values of t. Since $p(t)>0$ for $t>c$, we have that $p(z)-q(z)=p(z) \geq 0$, so that $p(t) \geq q(t)$ for all $t>0$.

Hence, for $0<t<a$, we have that $q(t) \leq p(t)<0$, from which it follows that $q(t)$ has no root less than a. Hence $x \geq a$ as desired.

