Solutions

626. Let ABC be an isosceles triangle with AB = AC, and suppose that D is a point on the side BC' with
BC > BD > DC'. Let BE and CF be diameters of the respective circumcircles of triangles ABD and
ADC, and let P be the foot of the altitude from A to BC. Prove that PD : AP = EF : BC.

Solution 1. Since angles BDE and C'DF are both right, £ and F both lie on the perpendicular to BC'
through D. Since ABDFE and ADCF are concyclic,

{AEF = /ABD = /ABC = /ACB = /ACD = /AFD = /AFE .

Therefore triangles AEF and ABC' are similar. Thus AEF is isosceles and its altitude through A is

perpendicular to DEF and parallel to BC, so that it is equal to PD. Therefore, from the similarity,
PD: AP = EF : BC, as desired.

Solution 2. Since the chord AD subtends the same angle (LABC = /ACB) in circles ABD and ACD,
these circles must have equal diameters. The rotation with centre A that takes B to C takes the circle ABD
to a circle with chord AC of equal diameter. The angle subtended at D by AB on the circumcircle of ABD
is the supplement of the angle subtended at D by AC on the circumcircle of ACD. Therefore, this image
circle must be the circle ACD. Therefore the diameter BE is carried to the diameter CF, and FE is carried
to F. Hence AE = AF and /BAC = /EAF. Thus, triangles ABC and AEF are similar.

Now consider the composite of a rotation about A through a right angle followed by a dilatation of
factor |AE|/|AB|. This transformation take B to E and C to F, and therefore the altitude AP to the
altitude AM of triangle AEF which is therefore parallel to BC. Since D lies on the circumcircle of ABD
with diameter BE, /BDE = 90°. Similarly, /CDF = 90°. Hence AM DP is a rectangle and AM = PD.
The result follows from the similarity of triangles ABC and AEF.

627. Let o
fl@,y,2) =22" + 2 — 22 + — + = .
Ty

There are three pairwise distinct numbers a, b, ¢ for which
fla,b,¢) = f(b,c,a) = f(c,a,b) .
Determine f(a,b,c). Determine three such numbers a, b, c.

Solution. Suppose that a, b, ¢ are pairwise distinct and f(a,b,c) = f(b,c,a) = f(c,a,b). Then

7 1 7 1
2024202 -2+ —+ = =224+ 262 —2a2+ — + =
ab ¢ be  a

A(a? - ) = (i‘i)(l_b zﬁ(c—a)(b—ﬂ.

Therefore 4abc(a + ¢) = 7 — b. Similarly, 4abe(b 4+ a) = 7 — ¢. Subtracting these equations yields that
4abe(c — b) = ¢ — b so that 4abec = 1. Tt follows that a+ b+ c= 7.

so that

Therefore
f(a,b,c) =2(a® + b*) — 2¢* + 28¢ + 4ab

=2(a+b)? —2c% +28¢ = 2(7 — ¢)? — 2¢% + 28¢
=08 —28¢c+2¢% — 22 +28¢ =98 .

We can find such triples by picking any nonzero value of ¢ and solving the quadratic equation % — (7 —
c)t + (1/4¢) =0 for a and b. For example, taking ¢ = 1 yields the triple

(a,b,¢) = <6+2@, g _2@, 1) .




628. Suppose that AP, BQ and C'R are the altitudes of the acute triangle ABC, and that

9AP +4BQ+7CR =0

Prove that one of the angles of triangle ABC' is equal to 60°.

Solution 1. [H. Spink] Since the sum of the three vectors 9@, 4@, 7CR is zero, there is a triangle
whose sides have lengths 9|AP|, 4|BQ|, 7T|CR| and are parallel to the corresponding vectors.

Where H is the orthocentre, we have that
/BHP =90° - /QBC = /ACB

so that the angle between the vectors AP and m is equal to angle ACB. Similarly, the angle between
vectors m and CR is equal to angle BAC. It follows that the triangle formed by the vectors is similar to
triangle ABC' and

|AB| : 7|CR| = |BC| : 9]AP| = |CA] : 4|BQ)] .

Since twice the area of the triangle ABC is equal to
|AB| x [CR| = |BC| x |AP| = |CA| x |BQ) ,

we have that (with conventional notation for side lengths)

sothat a:b:c=3:2: 7.

If one angle of the triangle is equal to 60° we would expect it to be neither the largest nor the smallest.
Accordingly, we compute the cosine of angle AC B, namely

a2+b270279+47776 1

2ab T 2x3x2 12 27
Therefore /ACB = 60°.

Solution 2. Let the angles of the triangle be « = /BAC, 8 = /CBA and v = LACB; let p, q, r be
the respective magnitudes of vectors ﬁ, m, CR. Taking the dot product of the vector equation with
BC' and noting that /QBC = 90 — v and /BCR = 90 — 3, we find that 4¢siny = 7rsin 3. Similarly,
9psiny = Trsina and 9psin § = 4¢gsin «. Using the conventional notation for the sides of the triangle, we
have that

a:b:c=sina:sinf:siny=9p:4q: 7r.

However, we also have that twice the area of triangle ABC is equal to ap =bg =cr,sothat a:b:c=
(1/p) : (1/q) : (1/r). Therefore 9p? = 4¢*> = Tr? = k, for some constant k. Therefore

a? +b* - 8lp* + 16¢% — 4912

/ACB =
cos LAC 2ab 72pq
_ 9k +4k -7k 1
B 12k 27

from which it follows that /C = 60°.

Solution 3. [C. Deng] Observe that
|BQ| = |BC|cos LQBC = |BC|/sin ACB ,
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|CR| = |BC|cos LRCB = |BC|sin LABC' .
Resolving in the direction of BC , we find from the given equation that
4|BC|cos* /QBC = 4|BQ| cos LQBC = 7|CR|cos /RCB = 7|BC|cos* /RCB

= 4sin? /ACB = 7sin®2 ZABC .

By the Law of Sines, AC' : AB = sin /ABC : sin /ACB = 2 : /7 . Similarly AC : BC = 2 : 3, so that
CA: AB: BC =2:+/7:3. The cosine of angle ACB is equal to (4+9—7)/12 = 1/2, so that /ACB = 60°.

629. (a) Let a >b>c¢>d>0and a+d = b+ c. Show that ad < be.
(b) Let a,b,p,q,r, s be positive integers for which

P<
q

<

» |3

o e

and gr — ps = 1. Prove that b > g+ s.

(a) Solution 1. Since ¢ = a + d — b, we have that

be—ad=bla+d—b)—ad=(a—bb—(a—bd=(a—b)(b—d)>0 .

Solution 2. Let a+d =b+ ¢ =u. Then
be—ad=bu—b) —(u—dd=ub-d) — b -d*)=b-d)(u—b—d) .

Nowu=b+c>b-+d, sothat u—b—d >0 as well asb—d > 0. Hence bc — ad > 0 as desired.

Solution 3. Let x =a —b > 0. Since a — b = ¢ — d, we have that a = b+ = and d = ¢ — x. Hence
be—ad =bc— (b+x)(c—z)=br—cx+a*=a>+z(b—c)>0.
Solution 4. Since \/a > Vb > /¢ > Vd, \Ja —\/d > Vb — \/c. Squaring and using a + d = b + ¢ yields
2v/be > 2v/ad, whence the result.

(b) Solution. Since all variables represent integers,
aqg—bp>0,br—as>0=aq—bp>1,br—as>1.

Therefore
b=b(qgr —ps) =q(br —as) +s(ag—bp) > q+s .

630. (a) Show that, if

CcoS v sinai 1
cosfB  sinf ’

then 5 4
cos sin
8, sin’f _

COS (v sin o

1.

(b) Give an example of numbers e and 3 that satisfy the condition in (a) and check that both equations
hold.

(a) Solution 1. Let

cos 3 sin 3
A= and pu= — .
cos o sin «




Since A™! + u~! = —1, we have that A + p = —Au. Now
1 =cos?B+sin? =N cos?a+ p?sina = A2 + (pu? — A sin?a = A% — (u — M) Apsin? o .

Hence . 5
COS sin
B, snf _

COS v sin «

A3 cos? a + p? sin? o

=AM cos? a + p?sin® @) + (u — A\)p? sin® o
= A+ (p— Np?sin® a

1
= X[Az + (A% = 1)y
= %[)\24—)\2#4-)\4-)\/1

=A+\p+14+p=1.

Solution 2. [M. Boase]
cosa  sina

cosf  sinpf

sin(a+ ) +sinfScos =0 .

Therefore
cos® 3 n sin® 3 _cos (1 — sin? ) n sin (1 — cos? 3)
COS (v sina CcoS & sin o
cos sin sin cos
= ﬂ—f— - ﬂ—sinﬂcosﬁ( ﬁ—l— - ﬂ)
cosa  sina cosa  sina

sin(e+ )  cos@sin f(cos(a — 9))

cos o sin «v Ccos o sin o

—2sin B cos 8+ 2sin(a + 8) cos(a — ) .

= - using ()
2 sin a cos «

_ —2sinfcos f + [sin 2« +sin 23] 1

B sin 2« o

since 2sin 3 cos 3 = sin 2(3.
Solution 3. [A. Birka] Let cosa = = and cos 8 = y. Then

. 1_ .2
S%noz:i x
sin 3 1—192

Since
1— 22

1:
Fl=F 1

then
(2% + 20y +y*) (1 - y*) = y*(1 - 2?)
whence
z? + 2zy = 229 + ¢yt .
Thus,

1—192

cos o sin a x 1—22
v -9y oyt + 22y’ —ay
z " oty 2w +)




Solution 4. [J. Chui] Note that the given equation implies that sin28 = —2sin(a + ) and that the

numerator of 3
cosa sina cos?f  sin®p

cos(3 sinf8  cosa sin «

is one quarter of

é]:[cos2 asin asin 3 + sin? a cos a cos 3 4 cos® B sin asin 3 + sin? 8 cos « cos e
= 4[cos? asin asin 4 sin® a cos a cos B + (cos® § — cos? Bsin® B) sin asin 3
+ (sin? B — sin? f cos? 3) cos a cos f]
= (4 cos? a + 4 cos? f — sin? 20) sinasin 8 + (4 sin? & + 4 sin? 8 — sin? 2(3) cos acos B
= 2sin2a cos asin 8 + 2sin 23 cos B sin « + 2 sin 2« sin a cos 8 + 2 sin 23 cos asin 3
— sin® 23(cos v cos 3 + sin asin f3)
= 2(sin 2« + sin 23) sin(a + 3) — sin”® 23 cos(a — 3)
= 2sin(a + B)[sin 2« + sin 25 — 2sin(a + B) cos(a — 8)] =0 ,

since
sin2a +sin28 =sin(a+ 8+ a — §) +sin(a+ 5 —a—3) .

Solution 5. [A. Tang] From the given equation, we have that

sin(a+ ) = —sinfBcos 8 ,

cos@  —sinf

cosa sina+sinfg

and
sin 3 —cos 3
sina  cosa + cos 8
Hence cos* 3 sin®f3 9 —sin 3 . 9 —cos 3
cos o sina ﬂ{sina—i—sinﬁ] e /B[cosa—&—cosﬂ]
B sin 3 cos fcos acos B + sin acsin G + 1]
B _4Sin%(a + B) cos 2 (a — B3) cos & (a + B) cos 3 (o — B)
B sin(a + B)[cos(a — B) + 1] _1
[2sin £ (a + B) cos § (o + B)][2 cos? § (o — )] '
Solution 6. [D. Arthur] The given equations yield 2sin(a + §) = —sin20, cosasin § = — cos S(sina +
sin 8) and sin acos § = — sin B(cos a + cos 3). Hence

cos® 3 n sin® 3 cos? B(cos Bsin ) + sin® B(sin B cos a)

cos « sin a cos asin a
- cos? Bsin B(cos a + cos 3) — sin? 3 cos B(sin a + sin 3)
N cos asin a
_ —cos (#sin B(cos acos 3 + cos? 3 + sin asin 8 + sin® 0)
B cosasina
~ —sin23(1 + cos(a — f3))
B sin 2«
_ —sin2f 4 2sin(a + () cos(a — 3)
B sin 2«
_ —sin 206 + sin 2a 4 sin 2 _1
sin 2a



Solution 7. [C. Deng] Let sin 3 = x, cos § = y, and (sina)/(sin 3) = ¢. Thus, (cosa)/(cos3) = —1 —c.
We have that
Jj2 4 y2 -1

and
(co)? + (—1—)y)? =1.

Solving the system yields that

2_62—|—26 2_1—02
142 S 142¢
Therefore,
sin® 3 cos3ﬁ_x2 y? B 2+ 2 n 1—¢2
sin o cosa ¢ —1—c¢ ¢2c+1)  (—c—1)(2c+1)
c+ 2 c—1
—_ _|_ —
2c+1 2c+1

(b) Solution. The given equation is equivalent to 2sin(a + 3) 4+ sin28 = 0. Try § = —45° so that
sin(a — 45°) = . We take a = 75°. Now

1 1
sin 75° = sin(45° 4+ 30°) = (\/3 + >

NAE

and

1 -1
cos 75° = cos(45° + 30°) = 7 (\/32 >

It is straightforward to check that both equations hold.
631. The sequence of functions {P,} satisfies the following relations:
Pi(zx)=x, Py(z) = 23,

Pp(x) — Pooa(x)

P,i1i(x) = , n=123:--.
e C Po(z) P, (2)

Prove that all functions P,, are polynomials.

Solution 1. Taking x = 1,2, 3, - - - yields the respective sequences

{1,1,0,—-1,-1,0,---}, {2,8,30,112,418,1560,---} , {3,27,240,2133,---} .

In each case, we find that
Pri1(2) = 2Py () — Poo(a) (1)

for n =2,3,---. If we can establish (1) in general, it will follow that all the functions P, are polynomials.
From the definition of P,,, we find that
Puj1+ Py1=Py(P?— P, 1P,_1) .
Therefore, it suffices to establish that P2 — P, 1P,_1 = 22 for each n. Now, for n > 2,

[Pr%-i-l - Pn+2pn] - [P»,? - Pn+1pvz—1] = Pn+1(P7L+1 + Pn—l) - Pn(P7L+2 + Pn)
= Pn—&-lpn(Py% - Pn-l-an—l) - PnPn+1(P2+1 - P7L+2Pn)

n

= - n+1Pn[(Pr%+1 - Pn+2pn) - (P,% - Pn+1P7L—1)] ’
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so that either P, 1 (2)P,(z)+1=0or Pﬁﬂ — Pyi2P, = P?— P, 1 P,_1. The first identity is precluded by
the case x = 1, where it is false. Hence

P3+1_Pn+2pn:P3_Pn+1Pnfl
for n =2,3,---. Since P#(x) — P3(x)Py(z) = 22, the result follows.

Solution 2. [By inspection, we make the conjecture that P, (z) = 2?P,,_1(x) — P,_2. Rather than prove
this directly from the rather awkward condition on P, we go through the back door.] Define the sequence
{Q,} for n=0,1,2,--- by

Qo(l') =0 ; Ql(l‘) =T, QnJrl = $2Qn($> - anl(l')
for n > 1. It is clear that @, () is a polynomial of degree 2n—1 forn = 1,2, - .. We show that P, (z) = Q,(x)
for each n.
Lemma: Q%(z) — Qni1Qn—1 = 22 forn > 1.
Proof: This result holds for n = 1. Assume that it holds for n =k —1 > 1. Then
Qi (2) = Qry1(2)Qr—1(2) = Qi (x) — (2?Qn(x) — Qr—1(2))Qr—1(2)
= Qr(2)(Qi(z) — 2°Qp-1(2)) + QF_; (v)
= —Qr(2)Qr—2() + QF_1(z) =2 . &

From the lemma, we find that

Qnt1(2) + Qn-1(2) + Qn+1(2)Qn(2)Qn-1(z)
= ngn(x) + QnJrl(x)Qn(x)anl(x) = Qn(l‘)(l‘2 + QnJrl(x)anl(m)) = Qi(m)
Q@) Q@)
1+ Qn(x)Qn—l(-r)
We know that Qi(x) = Pi(z) and Q2(x) = Pa(z). Suppose that Q,(z) = P,(z) for n =1,2,---, k. Then

_ Qi (x) — Qp_1(x) _ Pi(z) — Pp1(x)
1+Qk($)@k_1($) 1 —|—Pk(x)Pk_1(x)

from the definition of Pj4;1. The result follows.

= Qn+1(x) (n=1,2,---).

Qr+1(2) = Py1(z)

Comment: It can also be established that P2, + P2 = (1+ P, P,11)z? for each n > 0.

Solution 3. [I. Panayotov] First note that the sequence {P,(x)} is defined for all values of z, i.e., the
denominator 1+ P,_1(z) P, (x) never vanishes for n and . Suppose otherwise, and let n be the least number
for which there exists u for which 1+ P,_1(u)P,(u) = 0. Then n > 3 and

Pn—l(u)4 - n—l(u)Pn—2(u)

“I= BB = e B (W)

which implies that P,_;(u)* = —1, a contradiction.

We now prove by induction that P, 1 = 2P, — P,_1. Suppose that Py = 22P;,_1 — Pj,_o for 3 < k < n,
so that in particular we know that Py is a polynomial for 1 < k < n. Substituting for Py yields

Piy(z) = Peoa()[a® + 2 Peey(2) Po—z(7) — Pi_5(2)]
for all z. If Py_1(x) # 0, then
Pi_y(z) = a® + 2 Py () Paa() — o (x) -
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Both sides of this equation are polynomials and so continuous functions of z. Since the roots of P
constitute a finite discreet set, this equation holds when x is one of the roots as well. Now

PS - Pn—l _ Pn(xQPn—l - Pn—2)2 — In—-1

Py = —
i ]-+PnPn71 1+PnPn71
Pn(ZLAPTQL_l — Izpn_lpn_g + £C2 — Pﬁ_l) — Pn—l
B 1+ PnPn—l
P,(22P,P, 1 + 22— P2 ) —P,_
= (z 11+ ;npnlnl) ! since z?P,_ 1 — P,_o =P,
P, —Py1)(1+ P,P,_
_ (x 1)( + 1) _ IQP’IL o Pn—l
1+ PnPnfl

The result follows.

632. Let a,b,c,x,y,z be positive real numbers for which a < b < ¢,z <y < z,a+b+c=x+y+ z,
abc = xyz, and ¢ < z, Prove that a < x.

Solution. Let
p(t) = (t—a)(t —=b)(t —c) =t> — (a + b+ c)t* + (ab + be + ca)t — abe
and
qt)=(t—a)t —y)(t—2) =" (x+y+2)t* + (zy + yz + z22)t — vyz .

Then p(t) — q(t) = (ab+ be + ca — xy — yz — zx)t never changes sign for positive values of ¢. Since p(t) > 0
for ¢ > ¢, we have that p(z) — ¢(z) = p(z) > 0, so that p(t) > ¢(¢) for all ¢ > 0.

Hence, for 0 < ¢ < a, we have that ¢(t) < p(t) < 0, from which it follows that ¢(¢) has no root less than
a. Hence x > a as desired.



