
Solutions

626. Let ABC be an isosceles triangle with AB = AC, and suppose that D is a point on the side BC with
BC > BD > DC. Let BE and CF be diameters of the respective circumcircles of triangles ABD and
ADC, and let P be the foot of the altitude from A to BC. Prove that PD : AP = EF : BC.

Solution 1. Since angles BDE and CDF are both right, E and F both lie on the perpendicular to BC
through D. Since ABDE and ADCF are concyclic,

6 AEF = 6 ABD = 6 ABC = 6 ACB = 6 ACD = 6 AFD = 6 AFE .

Therefore triangles AEF and ABC are similar. Thus AEF is isosceles and its altitude through A is
perpendicular to DEF and parallel to BC, so that it is equal to PD. Therefore, from the similarity,
PD : AP = EF : BC, as desired.

Solution 2. Since the chord AD subtends the same angle (6 ABC = 6 ACB) in circles ABD and ACD,
these circles must have equal diameters. The rotation with centre A that takes B to C takes the circle ABD
to a circle with chord AC of equal diameter. The angle subtended at D by AB on the circumcircle of ABD
is the supplement of the angle subtended at D by AC on the circumcircle of ACD. Therefore, this image
circle must be the circle ACD. Therefore the diameter BE is carried to the diameter CF , and E is carried
to F . Hence AE = AF and 6 BAC = 6 EAF . Thus, triangles ABC and AEF are similar.

Now consider the composite of a rotation about A through a right angle followed by a dilatation of
factor |AE|/|AB|. This transformation take B to E and C to F , and therefore the altitude AP to the
altitude AM of triangle AEF which is therefore parallel to BC. Since D lies on the circumcircle of ABD
with diameter BE, 6 BDE = 90◦. Similarly, 6 CDF = 90◦. Hence AMDP is a rectangle and AM = PD.
The result follows from the similarity of triangles ABC and AEF .

627. Let
f(x, y, z) = 2x2 + 2y2 − 2z2 +

7
xy

+
1
z

.

There are three pairwise distinct numbers a, b, c for which

f(a, b, c) = f(b, c, a) = f(c, a, b) .

Determine f(a, b, c). Determine three such numbers a, b, c.

Solution. Suppose that a, b, c are pairwise distinct and f(a, b, c) = f(b, c, a) = f(c, a, b). Then

2a2 + 2b2 − 2c2 +
7
ab

+
1
c

= 2b2 + 2c2 − 2a2 +
7
bc

+
1
a

so that

4(a2 − c2) =
(

1
a
− 1

c

)(
1− 7

b

)
=

1
abc

(c− a)(b− 7) .

Therefore 4abc(a + c) = 7 − b. Similarly, 4abc(b + a) = 7 − c. Subtracting these equations yields that
4abc(c− b) = c− b so that 4abc = 1. It follows that a + b + c = 7.

Therefore
f(a, b, c) = 2(a2 + b2)− 2c2 + 28c + 4ab

= 2(a + b)2 − 2c2 + 28c = 2(7− c)2 − 2c2 + 28c

= 98− 28c + 2c2 − 2c2 + 28c = 98 .

We can find such triples by picking any nonzero value of c and solving the quadratic equation t2 − (7−
c)t + (1/4c) = 0 for a and b. For example, taking c = 1 yields the triple

(a, b, c) =
(

6 +
√

35
2

,
6−

√
35

2
, 1

)
.
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628. Suppose that AP , BQ and CR are the altitudes of the acute triangle ABC, and that

9−→AP + 4−−→BQ + 7−→CR = −→
O .

Prove that one of the angles of triangle ABC is equal to 60◦.

Solution 1. [H. Spink] Since the sum of the three vectors 9−→AP , 4−−→BQ, 7−→CR is zero, there is a triangle
whose sides have lengths 9|AP |, 4|BQ|, 7|CR| and are parallel to the corresponding vectors.

Where H is the orthocentre, we have that

6 BHP = 90◦ − 6 QBC = 6 ACB

so that the angle between the vectors −→AP and −−→
BQ is equal to angle ACB. Similarly, the angle between

vectors −−→BQ and −→CR is equal to angle BAC. It follows that the triangle formed by the vectors is similar to
triangle ABC and

|AB| : 7|CR| = |BC| : 9|AP | = |CA| : 4|BQ| .

Since twice the area of the triangle ABC is equal to

|AB| × |CR| = |BC| × |AP | = |CA| × |BQ| ,

we have that (with conventional notation for side lengths)

c2

7
=

a2

9
=

b2

4

so that a : b : c = 3 : 2 :
√

7.

If one angle of the triangle is equal to 60◦ we would expect it to be neither the largest nor the smallest.
Accordingly, we compute the cosine of angle ACB, namely

a2 + b2 − c2

2ab
=

9 + 4− 7
2× 3× 2

=
6
12

=
1
2

.

Therefore 6 ACB = 60◦.

Solution 2. Let the angles of the triangle be α = 6 BAC, β = 6 CBA and γ = 6 ACB; let p, q, r be
the respective magnitudes of vectors −→AP , −−→BQ, −→CR. Taking the dot product of the vector equation with−−→
BC and noting that 6 QBC = 90 − γ and 6 BCR = 90 − β, we find that 4q sin γ = 7r sinβ. Similarly,
9p sin γ = 7r sinα and 9p sinβ = 4q sinα. Using the conventional notation for the sides of the triangle, we
have that

a : b : c = sinα : sinβ : sin γ = 9p : 4q : 7r .

However, we also have that twice the area of triangle ABC is equal to ap = bq = cr, so that a : b : c =
(1/p) : (1/q) : (1/r). Therefore 9p2 = 4q2 = 7r2 = k, for some constant k. Therefore

cos 6 ACB =
a2 + b2 − c2

2ab
=

81p2 + 16q2 − 49r2

72pq

=
9k + 4k − 7k

12k
=

1
2

,

from which it follows that 6 C = 60◦.

Solution 3. [C. Deng] Observe that

|BQ| = |BC| cos 6 QBC = |BC|6 sinACB ,
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|CR| = |BC| cos 6 RCB = |BC| sin 6 ABC .

Resolving in the direction of −−→BC, we find from the given equation that

4|BC| cos2 6 QBC = 4|BQ| cos 6 QBC = 7|CR| cos 6 RCB = 7|BC| cos2 6 RCB

=⇒ 4 sin2 6 ACB = 7 sin2 6 ABC .

By the Law of Sines, AC : AB = sin 6 ABC : sin 6 ACB = 2 :
√

7 . Similarly AC : BC = 2 : 3, so that
CA : AB : BC = 2 :

√
7 : 3. The cosine of angle ACB is equal to (4+9−7)/12 = 1/2, so that 6 ACB = 60◦.

629. (a) Let a > b > c > d > 0 and a + d = b + c. Show that ad < bc.

(b) Let a, b, p, q, r, s be positive integers for which

p

q
<

a

b
<

r

s

and qr − ps = 1. Prove that b ≥ q + s.

(a) Solution 1. Since c = a + d− b, we have that

bc− ad = b(a + d− b)− ad = (a− b)b− (a− b)d = (a− b)(b− d) > 0 .

Solution 2. Let a + d = b + c = u. Then

bc− ad = b(u− b)− (u− d)d = u(b− d)− (b2 − d2) = (b− d)(u− b− d) .

Now u = b + c > b + d, so that u− b− d > 0 as well as b− d > 0. Hence bc− ad > 0 as desired.

Solution 3. Let x = a− b > 0. Since a− b = c− d, we have that a = b + x and d = c− x. Hence

bc− ad = bc− (b + x)(c− x) = bx− cx + x2 = x2 + x(b− c) > 0 .

Solution 4. Since
√

a >
√

b >
√

c >
√

d,
√

a−
√

d >
√

b−
√

c. Squaring and using a + d = b + c yields
2
√

bc > 2
√

ad, whence the result.

(b) Solution. Since all variables represent integers,

aq − bp > 0, br − as > 0 =⇒ aq − bp ≥ 1, br − as ≥ 1 .

Therefore
b = b(qr − ps) = q(br − as) + s(aq − bp) ≥ q + s .

630. (a) Show that, if
cos α

cos β
+

sinα

sinβ
= −1 ,

then
cos3 β

cos α
+

sin3 β

sinα
= 1 .

(b) Give an example of numbers α and β that satisfy the condition in (a) and check that both equations
hold.

(a) Solution 1. Let

λ =
cos β

cos α
and µ =

sinβ

sinα
.
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Since λ−1 + µ−1 = −1, we have that λ + µ = −λµ. Now

1 = cos2 β + sin2 β = λ2 cos2 α + µ2 sin2 α = λ2 + (µ2 − λ2) sin2 α = λ2 − (µ− λ)λµ sin2 α .

Hence
cos3 β

cos α
+

sin3 β

sinα
= λ3 cos2 α + µ3 sin2 α

= λ(λ2 cos2 α + µ2 sin2 α) + (µ− λ)µ2 sin2 α

= λ + (µ− λ)µ2 sin2 α

=
1
λ

[λ2 + (λ2 − 1)µ]

=
1
λ

[λ2 + λ2µ + λ + λµ

= λ + λµ + 1 + µ = 1 .

Solution 2. [M. Boase]
cos α

cos β
+

sinα

sinβ
= −1 =⇒

sin(α + β) + sin β cos β = 0 . (∗)
Therefore

cos3 β

cos α
+

sin3 β

sinα
=

cos β(1− sin2 β)
cos α

+
sinβ(1− cos2 β)

sinα

=
cos β

cos α
+

sinβ

sinα
− sinβ cos β

(
sinβ

cos α
+

cos β

sinα

)
=

sin(α + β)
cos α sinα

− cos β sinβ(cos(α− β))
cos α sinα

=
−2 sinβ cos β + 2 sin(α + β) cos(α− β)

2 sinα cos α
using (∗)

=
−2 sinβ cos β + [sin 2α + sin 2β]

sin 2α
= 1

since 2 sinβ cos β = sin 2β.

Solution 3. [A. Birka] Let cos α = x and cos β = y. Then

sinα

sinβ
= ±

√
1− x2

1− y2
.

Since
x

y
+ 1 = ∓

√
1− x2

1− y2
.

then
(x2 + 2xy + y2)(1− y2) = y2(1− x2) ,

whence
x2 + 2xy = 2xy3 + y4 .

Thus,
cos3 β

cos α
+

sin3 β

sinα
=

y3

x
± (1− y2)

√
1− y2

1− x2

=
y3

x
− (1− y2)y

x + y
=

y4 + 2xy3 − xy

x(x + y)

=
x2 + xy

x(x + y)
= 1 .
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Solution 4. [J. Chui] Note that the given equation implies that sin 2β = −2 sin(α + β) and that the
numerator of

cos α

cos β
+

sinα

sinβ
+

cos3 β

cos α
+

sin3 β

sinα

is one quarter of

4[cos2 α sinα sinβ + sin2 α cos α cos β + cos4 β sinα sinβ + sin4 β cos α cos β]

= 4[cos2 α sinα sinβ + sin2 α cos α cos β + (cos2 β − cos2 β sin2 β) sinα sinβ

+ (sin2 β − sin2 β cos2 β) cos α cos β]

= (4 cos2 α + 4 cos2 β − sin2 2β) sinα sinβ + (4 sin2 α + 4 sin2 β − sin2 2β) cos α cos β

= 2 sin 2α cos α sinβ + 2 sin 2β cos β sinα + 2 sin 2α sinα cos β + 2 sin 2β cos α sinβ

− sin2 2β(cos α cos β + sinα sinβ)

= 2(sin 2α + sin 2β) sin(α + β)− sin2 2β cos(α− β)
= 2 sin(α + β)[sin 2α + sin 2β − 2 sin(α + β) cos(α− β)] = 0 ,

since
sin 2α + sin 2β = sin(α + β + α− β) + sin(α + β − α− β) .

Solution 5. [A. Tang] From the given equation, we have that

sin(α + β) = − sinβ cos β ,

cos β

cos α
=

− sinβ

sinα + sinβ
,

and
sinβ

sinα
=

− cos β

cos α + cos β
.

Hence
cos3 β

cos α
+

sin3 β

sinα
= cos2 β

[
− sinβ

sinα + sinβ

]
+ sin2 β

[
− cos β

cos α + cos β

]
= − sinβ cos β[cos α cos β + sinα sinβ + 1]

4 sin 1
2 (α + β) cos 1

2 (α− β) cos 1
2 (α + β) cos 1

2 (α− β)

=
sin(α + β)[cos(α− β) + 1]

[2 sin 1
2 (α + β) cos 1

2 (α + β)][2 cos2 1
2 (α− β)]

= 1 .

Solution 6. [D. Arthur] The given equations yield 2 sin(α + β) = − sin 2β, cos α sinβ = − cos β(sinα +
sinβ) and sinα cos β = − sinβ(cos α + cos β). Hence

cos3 β

cos α
+

sin3 β

sinα
=

cos2 β(cos β sinα) + sin2 β(sinβ cos α)
cos α sinα

=
− cos2 β sinβ(cos α + cos β)− sin2 β cos β(sinα + sinβ)

cos α sinα

=
− cos β sinβ(cos α cos β + cos2 β + sinα sinβ + sin2 β)

cos α sinα

=
− sin 2β(1 + cos(α− β))

sin 2α

=
− sin 2β + 2 sin(α + β) cos(α− β)

sin 2α

=
− sin 2β + sin 2α + sin 2β

sin 2α
= 1 .
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Solution 7. [C. Deng] Let sinβ = x, cos β = y, and (sinα)/(sinβ) = c. Thus, (cos α)/(cos β) = −1− c.
We have that

x2 + y2 = 1

and
(cx)2 + (−1− c)y)2 = 1 .

Solving the system yields that

x2 =
c2 + 2c

1 + 2c
, y2 =

1− c2

1 + 2c
.

Therefore,
sin3 β

sinα
+

cos3 β

cos α
=

x2

c
+

y2

−1− c
=

c2 + 2c

c(2c + 1)
+

1− c2

(−c− 1)(2c + 1)

=
c + 2
2c + 1

+
c− 1
2c + 1

= 1 .

(b) Solution. The given equation is equivalent to 2 sin(α + β) + sin 2β = 0. Try β = −45◦ so that
sin(α− 45◦) = 1

2 . We take α = 75◦. Now

sin 75◦ = sin(45◦ + 30◦) =
1√
2

(√
3 + 1
2

)
and

cos 75◦ = cos(45◦ + 30◦) =
1√
2

(√
3− 1
2

)
.

It is straightforward to check that both equations hold.

631. The sequence of functions {Pn} satisfies the following relations:

P1(x) = x , P2(x) = x3 ,

Pn+1(x) =
P 3

n(x)− Pn−1(x)
1 + Pn(x)Pn−1(x)

, n = 1, 2, 3, · · · .

Prove that all functions Pn are polynomials.

Solution 1. Taking x = 1, 2, 3, · · · yields the respective sequences

{1, 1, 0,−1,−1, 0, · · ·} , {2, 8, 30, 112, 418, 1560, · · ·} , {3, 27, 240, 2133, · · ·} .

In each case, we find that
Pn+1(x) = x2Pn(x)− Pn−1(x) (1)

for n = 2, 3, · · ·. If we can establish (1) in general, it will follow that all the functions Pn are polynomials.

From the definition of Pn, we find that

Pn+1 + Pn−1 = Pn(P 2
n − Pn+1Pn−1) .

Therefore, it suffices to establish that P 2
n − Pn+1Pn−1 = x2 for each n. Now, for n ≥ 2,

[P 2
n+1 − Pn+2Pn]− [P 2

n − Pn+1Pn−1] = Pn+1(Pn+1 + Pn−1)− Pn(Pn+2 + Pn)

= Pn+1Pn(P 2
n − Pn+1Pn−1)− PnPn+1(P 2

n+1 − Pn+2Pn)

= −Pn+1Pn[(P 2
n+1 − Pn+2Pn)− (P 2

n − Pn+1Pn−1)] ,
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so that either Pn+1(x)Pn(x) + 1 ≡ 0 or P 2
n+1−Pn+2Pn = P 2

n −Pn+1Pn−1. The first identity is precluded by
the case x = 1, where it is false. Hence

P 2
n+1 − Pn+2Pn = P 2

n − Pn+1Pn−1

for n = 2, 3, · · ·. Since P 2
2 (x)− P3(x)P1(x) = x2, the result follows.

Solution 2. [By inspection, we make the conjecture that Pn(x) = x2Pn−1(x)−Pn−2. Rather than prove
this directly from the rather awkward condition on Pn, we go through the back door.] Define the sequence
{Qn} for n = 0, 1, 2, · · · by

Q0(x) = 0 , Q1(x) = x , Qn+1 = x2Qn(x)−Qn−1(x)

for n ≥ 1. It is clear that Qn(x) is a polynomial of degree 2n−1 for n = 1, 2, · · ·. We show that Pn(x) = Qn(x)
for each n.

Lemma: Q2
n(x)−Qn+1Qn−1 = x2 for n ≥ 1.

Proof: This result holds for n = 1. Assume that it holds for n = k − 1 ≥ 1. Then

Q2
k(x)−Qk+1(x)Qk−1(x) = Q2

k(x)− (x2Qk(x)−Qk−1(x))Qk−1(x)

= Qk(x)(Qk(x)− x2Qk−1(x)) + Q2
k−1(x)

= −Qk(x)Qk−2(x) + Q2
k−1(x) = x2 . ♠

From the lemma, we find that

Qn+1(x) + Qn−1(x) + Qn+1(x)Qn(x)Qn−1(x)

= x2Qn(x) + Qn+1(x)Qn(x)Qn−1(x) = Qn(x)(x2 + Qn+1(x)Qn−1(x)) = Q3
n(x)

=⇒ Qn+1(x) =
Q3

n(x)−Qn−1(x)
1 + Qn(x)Qn−1(x)

(n = 1, 2, · · ·) .

We know that Q1(x) = P1(x) and Q2(x) = P2(x). Suppose that Qn(x) = Pn(x) for n = 1, 2, · · · , k. Then

Qk+1(x) =
Q3

k(x)−Qk−1(x)
1 + Qk(x)Qk−1(x)

=
P 3

k (x)− Pk−1(x)
1 + Pk(x)Pk−1(x)

= Pk+1(x)

from the definition of Pk+1. The result follows.

Comment: It can also be established that P 2
n+1 + P 2

n = (1 + PnPn+1)x2 for each n ≥ 0.

Solution 3. [I. Panayotov] First note that the sequence {Pn(x)} is defined for all values of x, i.e., the
denominator 1+Pn−1(x)Pn(x) never vanishes for n and x. Suppose otherwise, and let n be the least number
for which there exists u for which 1 + Pn−1(u)Pn(u) = 0. Then n ≥ 3 and

−1 = Pn−1(u)Pn(u) =
Pn−1(u)4 − Pn−1(u)Pn−2(u)

1 + Pn−1(u)Pn−2(u)

which implies that Pn−1(u)4 = −1, a contradiction.

We now prove by induction that Pn+1 = x2Pn−Pn−1. Suppose that Pk = x2Pk−1−Pk−2 for 3 ≤ k ≤ n,
so that in particular we know that Pk is a polynomial for 1 ≤ k ≤ n. Substituting for Pk yields

P 3
k−1(x) = Pk−1(x)[x2 + x2Pk−1(x)Pk−2(x)− P 2

k−2(x)]

for all x. If Pk−1(x) 6= 0, then

P 2
k−1(x) = x2 + x2Pk−1(x)Pk−2(x)− P 2

k−2(x) .
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Both sides of this equation are polynomials and so continuous functions of x. Since the roots of Pk−1

constitute a finite discreet set, this equation holds when x is one of the roots as well. Now

Pn+1 =
P 3

n − Pn−1

1 + PnPn−1
=

Pn(x2Pn−1 − Pn−2)2 − Pn−1

1 + PnPn−1

=
Pn(x4P 2

n−1 − x2Pn−1Pn−2 + x2 − P 2
n−1)− Pn−1

1 + PnPn−1

=
Pn(x2PnPn−1 + x2 − P 2

n−1)− Pn−1

1 + PnPn−1
since x2Pn−1 − Pn−2 = Pn

=
(x2Pn − Pn−1)(1 + PnPn−1)

1 + PnPn−1
= x2Pn − Pn−1 .

The result follows.

632. Let a, b, c, x, y, z be positive real numbers for which a ≤ b ≤ c, x ≤ y ≤ z, a + b + c = x + y + z,
abc = xyz, and c ≤ z, Prove that a ≤ x.

Solution. Let

p(t) = (t− a)(t− b)(t− c) = t3 − (a + b + c)t2 + (ab + bc + ca)t− abc

and
q(t) = (t− x)(t− y)(t− z) = t3 − (x + y + z)t2 + (xy + yz + zx)t− xyz .

Then p(t)− q(t) = (ab + bc + ca− xy − yz − zx)t never changes sign for positive values of t. Since p(t) > 0
for t > c, we have that p(z)− q(z) = p(z) ≥ 0, so that p(t) ≥ q(t) for all t > 0.

Hence, for 0 < t < a, we have that q(t) ≤ p(t) < 0, from which it follows that q(t) has no root less than
a. Hence x ≥ a as desired.
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