Solutions for February

661. Let P be an arbitrary interior point of an equilateral triangle ABC. Prove that

|(LPAB — /PAC| > |/PBC — /PCB]| .

Solution. The result is clear if P is on the bisector of the angle at A, since both sides of the inequality
are 0.

Wolog, let P be closer to AB than AC, and let @ be the image of P under reflection in the bisector of
the angle A. Then
[PAQ = /PAC — /QAC = /PAC — /PAB

and
/PCQ=/.QCB—-/PCB=/PBC—-/PCB.

Thus, it is required to show that /PAQ > /PCQ.

Produce PQ to meet AB in R and AC in S. Consider the reflection R with axis RS. The circumcircle
¢ of AARS is carried to a circle € with chord RS. Since ZRCS < 60° = /RAS and the angle subtended
at the major arc of € by RS is 60°, the point C' must lie outside of €’. The circumcircle ® of AAPQ is
carried by R to a circle ®’ with chord PQ. Since D is contained in €, ®’ must be contained in €', so C
must lie outside of ®’. Hence /PC(Q must be less than the angle subtended at the major arc of ®' by PQ,
and this angle is equal to Z/PAQ. The result follows.

662. Let n be a positive integer and = > 0. Prove that

1 n+1
(1+2)"t > Mz .
nTL

Solution 1. By the Arithmetic-Geometric Means Inequality, we have that

N
1—|—x:n(1/n)+x> 1 . =
n+1 n+1 — |\n

so that

(14 x)n+! L
(n+ 1)n+1 — nn

and the result follows.

Solution 2. (by calculus) Let
flz)y=n"1+2)"" —(n+1)""z for 2>0.

Then )
Fa) = (n+ D" (42"~ (0417 = (o D[ 2)" — (14 L]
so that f'(z) < 0for 0 <z <1/nand f'(z) >0 for 1/n < z. Thus f(z) attains its minimum value 0 when

x=1/n and so f(z) > 0 when > 0. The result follows.

Solution 3. (by calculus) Let g(z) = (1+z)""12~!. Then ¢'(z) = (1+ )"z~ ?[nx — 1], so that g(z) < 0
for 0 < x < 1/n and ¢/(z) > 0 for x > 1/n. Therefore g(z) assumes its minimum value of (n + 1)"Tin="
when x = 1/n, and the result follows.



Solution 4. [G. Ghosn] We make the substituion ¢ = (nz)'/("*1) < z = "+ /n. Then it is required to
prove that
"t (n+ 1)t

14— >

n
Observe that

"t 4+ Dt—n=tt"—1)—nt—-1)=>t-1)"+t"" "+ +t—n)
=t-D[" =D+ 1)+ (t—1)]
=@t-1* " 42" (n—-1)] >0,
for ¢ > 0. The desired result follows.

Solution 5. Let u = nx — 1 so that 2 = (14 u)/n. Then

(14 z)"t! — (et 7 t;i)nﬂ r=(1+ % - %)”H —(1+ %)"H(l + u)
S ) <” ; 1) 1+ 22y
n <n;— 1) 1+ %)n—?(%)3 4o —(14 %)n—&-l(l + )
("3 (T as o

This is clearly nonnegative when u > 0. Suppose that —1 < u < 0. For 1 < k < n/2, we have that

n+1 1o okg1 U ok n+1 1onok Uiopi
( 2k >(1+n) (n) + 2k +1 (1+n) (n)

(n+ D14 1/n)""2k /4

2k 1 u
= (2k+1)!(n+1—2k)!<n> (@R + 1A+ 2)+ (n+1=20)(0)] -

This will be nonnegative if and only if the quantity in square brackets is nonnegative. Since u > —1, this
quantity exceeds

(2k+1)(1+%)—(n+1—2k)(%): <n21)(2k+1—1)—2f:2k>0.

Thus, each consecutive pair of terms in the sequence

(n—|—1>(1—|—1)"1(u)2+ (n+1>(1+1)n2(u)3+”_

2 n n 3 n n

has a positive sum and so the desired result follows.
663. Find all functions f: R — R such that

PP (fr+y) — f@) = f) =3@+y)f(@)f(y)

for all real numbers x and y.

Solution. An obvious solution if f(x) = 0. We consider other possibilities.

Setting y = 0 yields that 0 = 3z f(z) f(0) for all x. Setting y = —x yields that 2*[f(0)— f(z)—f(—x)] = 0,
so that f(0) = f(x) 4+ f(—x) for all nonzero z. Suppose, if possible, that f(0) # 0. Then, if x # 0, we
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must have that f(z) = 0, so that f(0) = f(x) 4+ f(—z) = 0, a contradiction. Therefore, f(0) = 0 and so
f(z) = = f(—=z) for all real x.

Setting y = x yields that
6
Fl2r) = S f(a)? + 27 (a)

for all nonzero x, while the sum = = 2z + (—z) leads to

4a'[2f(2) — f(22)] = 3xf(22) f(—2) = —32f(22) f(2) .

Therefore 6 6
| 0] = 3| 2 200 1)
so that
82%f(2)? = 6(2)° + 22° f()?
or

f@)? =2’ f(2)* .
Therefore, for each real x, either f(x) =0 or f(x) = 3.
Suppose that f(z) = 0 for some real z; note that y # 0. Select z so that f(x) # 0 and let y = z — z.
Then, since #2y(—[() — ()] = 32/ (2) f(y), f(y) # 0. Thus f(z) = 2, [(y) = 4° so that
—?y? (@ +y%) = 3z +y)ay’
This simplifies to
0= 2%y’ (z +y)(2* + 22y +y°) = 2°y*(x +y)°
with the result that 2 = 2 +y = 0. Therefore f(x) = 23 for all real z (including 0).

Comment. J. Seaton deserves credit for the argument that, if f(z) = 0 for all nonzero z, then f(0) =0
as well.

664. The real numbers z, y, and z satisfy the system of equations

2 —x= yz + 1;
2 _ :
Yy —y=xz+1;
22— z=xy+1
Find all solutions (z,y, z) of the system and determine all possible values of zy + yz + zx + x +y + 2
where (z,y, z) is a solution of the system.

Solution. First we dispose of the situation that not all the variables takes distinct values. If z = y = z,
then the equations reduce to x = —1, so that (z,y,2) = (=1, —1,—1) is a solution and z+y+z+xy+yz+z2x =
0.

By subtracting equations in pairs, we find that
O=@-yl+ty+z-1)=@W-2)@+y+z-1)=(E-a)z+ty+z-1).

Suppose that z # y = z. Then we must have x +2y =1l and 2> —z =y?> +1,s0that 0 =3y — 2y — 1 =
(3y +1)(y — 1). This leads to the two soutions (z,y,2) = (—=1,1,1),(3, -3, —3). Symmetric permutations
of these also are solutions and we find that z +y 4+ 2z + zy + yz + zxz = 0.
Henceforth, assume that the values of z, y, z are distinct. Any solution x, y, z of the system must satisfy
the cubic equation
t3—t2—t::1:yz.
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In particular, from the coefficients, we find that z+y+ 2 = 1 and zy 4+ yz + zx = —1 whence xy +yz + zz +
r+y+z=1.

Conversely, suppose that we take any real number w. Let x, y, z be the roots of the cubic equation
-t —t=w.

Then zyz = w. If w = 0, then the cubic equation has the roots {0, % (14 v/5),2(1 — v/5)} and it can be
checked that assigning these as the values of x, y and z any order will yields a solution to the given equation.
If w # 0, then plugging the roots into the equation and dividing by it will yield the given system.

All that remains is to discover which values of w will yield three real roots for the cubic. Let f(t) =
t3 — 2 — t. This function assumes a maximum value of 5/27 at t = —1/3 and a minimum value of —1 when
t = 1. Thus f(t) assumes each value in the closed interval [—1,5/27] three times, counting multiplicity, and
each other real value exactly once.

Thus, the solutions of the system are the roots of the cubic equation t3 — t2 — t = w, where w is any
real number selected from the interval [—1,5/27].

(Note, that the “extreme” solutions are (z,y,2) = (1,1,—1),(—1/3,—1/3,5/3). The only solution not
related to the cubic is (z,y,2) = (-1,—-1,-1).)

Comment. G. Ajjanagadde, in the case of distinct values of z, y and z, obtained the equations x+y+2z =
1 and zy + yz + zo = —1, whence, for given value of z, we get the system y+2=1—z and yz =22 —x — 1,
so that y and z are solutions of the quadratic equation

t?—(1—a)t+(@*—x—-1)=0.
The discriminant of this quadratic is
(1—z)?—4(2®>—2r—1)= -3 +2r+5=—Bzx—5)(z+1) .
Thus, we will obtain real values of z, y, z if and only if z, y and z lies between —1 and 5/3 inclusive.

665. Let f(z) = 22 + ax? + bz + b. Determine all integer pairs (a,b) for which f(z) is the product of three
linear factors with integer coefficients.

Solution. If b = 0, then the polynomial becomes x?(x + a), which satisfies the condition for all values of
a. This covers the situation for which « is a factor of the polynomial. Since the leading coefficient of f(z) is
1, the same must be true (up to sign) of its factors. Assume that f(z) = (z + u)(z + v)(x + w) for integers
u, v and w with uvw # 0. Since uvw = wv + vw + wu = b,

It is clearly not possible for all of u, v and w to be negative. Nor can it occur that two of them, say v and
w can be negative, for then the left side would be less than 1/u < 1. Suppose that u and v are positive,
while w is negative. One possibility is that u = 1 and v = —w in which case f(z) = (x + 1)(2? — v?) =
23 + 2% — v2xr — v2. If neither u nor v is equal to 1, then 1/u + 1/v+ 1/w < 1/u+ 1/v < 1, and this case
is not possible. Finally, suppose that u, v and w are all positive, with v < v < w. Then 1 < 3/u, so that
u < 3. A little trial and error leads to the possibilities (u,v,w) = (3,3,3),(2,4,4) and (2,3,6). Thus the
possibilities for (a, b) are (u,0), (1, —v?), (9,27), (10,32) and (11, 36). Indeed, 23 + 922 + 272 427 = (z+3)3,
23 4+ 1022 + 322 + 32 = (z + 2)(z + 4)? and 23 + 112% + 362 + 36 = (x + 2)(z + 3)(z + 6).

666. Assume that a face S of a convex polyhedron B has a common edge with every other face of 3. Show
that there exists a simple (nonintersecting) closed (not necessarily planar) polygon that consists of edges
of P and passes through all the vertices.



Solution. Suppose that the face S has m vertices Aq, Ao, ---, A, listed in order, and that there are n
vertices of 3 not contained in S. We prove the result by induction on n. If n = 1, then every face abutting .S
is a triangle. Let X be the vertex off S; then Ay --- A,,, X A1 is a polygonal path of the desired type. Suppose
that the result holds for any number of vertices m of S and for n vertices off S where 1 < n < k. Consider
the case n =k + 1.

Consider the graph G of all vertices of 8 and those edges of 8 not bounding S. Since there are no faces
bounded solely by these edges, the graph must be a tree (i.e., it contains no loops and there is a unique path
joining any pair of points). We show that there is at least one vertex X not in S for which every edge but
one must connect X to a vertex of S. Suppose otherwise. Then, let us start with such a vertex X and form
a sequence Xi, Xo,--- of vertices not in S such that X; X, ,; are edges of . Since the number of vertices
off S is finite, there must be i < j for which X; = X; so that X;X;,;--- X;,_1Xj; is a loop in G. But this
contradicts the fact that G is a tree.

Hence there is a vertex X with at most one adjacent edge not connecting it to S. If there were no such
edge, then X would be the only vertex not in S, contradicting k + 1 > 2. Hence there is a vertex Y not in
S such that XY is an edge of 8. We may assume that Y is further from the plane of S than S. (If not,
suppose that S is in the plane z = 0 and that 3 lies in the quadrant z > 0, y > 0 with Y further than X
from the plane y = 0. We can transform 3 by a mapping of the type (z,y,2) — (z,y,z + A\y) for suitable
positive X\. This will not alter the configuration of vertices and edges.) Extend Y X to a point Z in the plane
of S. Let 9 be the convex hull of (smallest closed convex set containing) Z and . This will have a side
T containing S of the form A1 Ay -+ A.ZA,---A,, where r < s. The triangles XZ A, and XZA, will be
coplanar with faces of 3, and the convex hull will have at most k vertices not on T. Every face of Q will
abut T'. By the induction hypothesis, we can construct a polygon containing each vertex of . If an edge of
this polygon is Y Z and so includes X, and if one edge is say ZA,, then we can replace these two edges by
YXAA1---Arp1 A, If YZ is not an edge of this polygon, but A,.Z and ZA; are, then we can replace
these edges by A, X A,11---As. In both cases, we obtain a polygon of the required type for .

667. Let A,, be the set of mappings f : {1,2,3,---,n} — {1,2,3,---,n} such that, if f(k) = i for some i, then
[ also assumes all the values 1,2, ---,i—1. Prove that the number of elements of A, is >_,~ ko= (k+1)

Solution 1. Let ug = 1 and, for n > 1, let u,, be the number of elements in A,,. Let 1 < r < n. Consider
the set of mappings in A,, for which the value 1 is assumed exactly r times. Then 1 < r < n. Then each
such mapping takes a set of n — 7 points onto a set of the form {2,3,---, s} where s—1 <n—r <n-—1.
Hence, there are u,_, such mappings. Since there are (7:) possible sets on which a mapping may assume the

value 1 r times,
n n n—1 n
=3 (e =X (M)

r=1 r=0

Now up = 1 = Y72 1/2"F1. Assume, as an induction hypothesis, that u, = Y ;o k" /2*1 for 0 < r < n—1.

Then
n—1 n n—1 n fe%s) k,,,
0= (Mo =2 (1)
r=0 r=0 k=0
e’} n—1 [e%s)
1 n T 1 n n
= Z 2k+1 (r>k = 9k+1 [(1 + k) —k ]
k=0 r=0 k=0
R N I N R N R
_Z ok+1 _ngﬂ _ZQT_ZQkH
k=0 k=0 k=1 k=1
— - kn
- 9k+1
k=1

and the result follows. (The interchange of the order of summation and rearrangement of terms in the infinite
sum can be justified by the absolute convergence of the series.)
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Solution 2. For 1 < i, let v; be the number of mappings of {1,2,---,n} onto a set of exactly i elements.
Observe that v; = 0 when ¢ > n + 1. There are k™ mappings of {1,2,---,n} into {1,2,---,k}, of which v
belong to A,. The other k™ — v, mappings will leave out ¢ numbers in the range for some 1 < i < k — 1,
and the 7 numbers not found can be selected in (’f) ways. Thus

Hence - .
o0 k/‘n o0 ,‘ ’ o0 n ; 5
PP o) DR L o W (L
k=0 k=0 i=1 k=0 1=1
YA AR VAN AW
S (S )= ()

i=1 k=0 i=1 k=i

We evaluate the inner sum. Fix the positive integer i. Suppose that we flip a fair coin an indefinite number
of times, and consider the event that the (¢ + 1)th head occurs on the (k 4 1)th toss. Then the previous 4
heads could have occurred in (’f) posible positions, so that the probability of the event is (§)2_(k+1). Since
the (i + 1)th head must occur on some toss with probability 1, > p- (k)2_(k+1) = 1. Hence

9

o0 kn n
D grar = QUi = # A
k=0 i=1

Solution 3. [C. Deng] Let s, = > oo o k"2~ (1 note that so = s; = 1. Let wp = 1 and w,, = #A4,, for
n > 1, so that, in particular, w; = 1.

For n >0,
Spi1 = 25n+1 N 22 kn+127(}€+1) _ Z kn+127(k}+1)
k=0 k=0

= Z[(k 4 1)t gl (k+D)

k=0
EEC)ee
7
k=0 1=0
(S )ee)
=0 k=0
n n-+1
S (17

We now show that w,, satisfies the same recursion. Suppose that g is an arbitrary element of A,
and that its maximum appears n + 1 — ¢ times, where 0 < ¢ < n. Then there are (”;H) ways to choose
the ¢ remaining slots to fill with numbers without leaving gaps in the range, and then we can fill in the
remaining n + 1 — ¢ slots with one more than the largest number in the range of the ¢ slots. Thus, we find
that wpy1 = Z?:o ("jl)wl The desired result now follows, since sy = wyg.



