On sums and differences of powers of rational numbers

Luis H. Gallardo and Philippe Goutet

Abstract

Given two nonzero integers $a, b \in \mathbb{Z}^{*}$, we characterize the rational numbers x, y such that $a x^{n}-b y^{n} \in \mathbb{Z}$ for all non-negative integers $n \in \mathbb{N}$.

1 Introduction

If a rational number $x \in \mathbb{Q}$ has a power which is an integer, then x itself is forced to be an integer by the fundamental theorem of arithmetic. In other words if we have $x=\frac{N}{D}$ with a positive integer D and an integer N, and both satisfy $(N / D)^{r}=K$ (where K is an integer), for some positive integer r, where N / D is a reduced fraction (N and D have no common factors, we also say that N and D are coprime); then by comparing exponents of each prime number appearing in both sides of the equality

$$
N^{r}=D^{r} K
$$

we get $D=1$ so that $x=N$ is indeed an integer.
A natural generalization of this problem consists in looking at $c_{n}=a x^{n}-b y^{n}$ where $a, b \in \mathbb{Z}^{*}$ are two nonzero integers and $x, y \in \mathbb{Q}$ are two rational numbers, and asking if the existence of some values of n such that c_{n} is an integer, i.e., $c_{n} \in \mathbb{Z}$ implies that x and y are indeed integers, i.e., $x, y \in \mathbb{Z}$.

The existence of only one n such that $c_{n} \in \mathbb{Z}$ is not sufficient, as shown, for example (check it !), by the relation $\left(\frac{13}{2}\right)^{5}+\left(\frac{19}{2}\right)^{5}=88981 \in \mathbb{Z}$. However, the result becomes true with the stronger assumption that all the c_{n} are in \mathbb{Z}.

Theorem 1 Consider two nonzero integers $a, b \in \mathbb{Z}^{*}$ and two rational numbers $x, y \in \mathbb{Q}$. If, for all $n \in \mathbb{N}$, ax $x^{n}-b y^{n} \in \mathbb{Z}$, then x and y are both integers unless $a=b$ and $x=y$.

Robert Israel (University of British Columbia), gives a direct proof [3] of the case $a=b=1$. At the end of the present note, we look at how to weaken the assumption that all the c_{n} are in \mathbb{Z} when $a \neq b$.

We recall some classical notation used in the proof: If a and b are two integers such that there exists an integer m such that $m a=b$ then we say that a divides b and we write: $a \mid b$. As usual, we write $d=\operatorname{gcd}(a, b)$ their greatest common divisor, so that, for example, $\operatorname{gcd}(17,51)=17$, while $\operatorname{gcd}(a, b)=1$ is equivalent to a, b are coprime. Now, we fix a positive integer $n \in \mathbb{N}$. First of all, Euler's totient function computed on n, denoted $\varphi(n)$ gives us the number of positive integers h in between 1 and n that are coprime with n. Second, and this is a little more

20/ ON SUMS AND DIFFERENCES OF POWERS OF RATIONAL NUMBERS

complicated object we consider here: the n-th cyclotomic polynomial $\Phi_{n}(t)$ is a one variable polynomial in the indeterminate t with integral coefficients that has the property that it is the polynomial, with integer coefficients, of minimal degree that vanishes when $t=w$ where the complex, but non-real, number $w \in \mathbb{C}$ is a n-th root of unity; this means that $w^{n}=1$. For example, $\Phi_{3}(t)=t^{2}+t+1$, since $\Phi_{3}(t)=\frac{t^{3}-1}{t-1}$ shows that $\Phi_{3}(w)=0$ for $w=\frac{-1+i \sqrt{3}}{2}=e^{\frac{2 \pi i}{3}}$ and also for $w^{2}=\frac{-1-i \sqrt{3}}{2}=e^{\frac{-2 \pi i}{3}}$, where w, w^{2} are the, non-real, 3-roots of unity in the field of complex numbers \mathbb{C}; while any polynomial of degree 1 with integer coefficients cannot vanish simultaneously in w and in w^{2}. A nice result of Gauss is that the degree of $\Phi_{n}(t)$ is precisely $\varphi(n)$.

2 The proof

We write x and y as irreducible fractions $x=\frac{N}{D}$ and $y=\frac{M}{E}$ with $D, E>0$. In order to show that both x and y are integers, we proceed in two steps, first showing that $D=E$ and then showing that $D=1$.

Lemma $1 D=E$.
Proof. As $c_{n}=a x^{n}-b y^{n} \in \mathbb{Z}$, we have $a N^{n} E^{n}-b M^{n} D^{n}=c_{n} E^{n} D^{n}$. Since D and N are coprime, we deduce that $D^{n} \mid a E^{n}$. Similarly, $E^{n} \mid b D^{n}$.

Consider a prime number p and write $a=p^{\alpha} a^{\prime}, b=p^{\beta} b^{\prime}, D=p^{d} D^{\prime}$, and $E=p^{e} E^{\prime}$ with $a^{\prime}, b^{\prime}, D^{\prime}$, and E^{\prime} coprime to p. Because $E^{n} \mid b D^{n}$, we have $n e \leq n d+\beta$ and, similarly, $D^{n} \mid a E^{n}$ gives $n d \leq n e+\alpha$. By taking $n>\max (\alpha, \beta)$, we deduce that $e \leq d$ and $d \leq e$ and so $d=e$. As this is valid for any prime p, we conclude that $D=E$.

Lemma $2 D=1$.
Proof. As $D=E$, we can rewrite $a x^{n}-b y^{n}=c_{n}$ as $a N^{n}-b M^{n}=c_{n} D^{n}$ and so $D^{n} \mid a N^{n}-b M^{n}$ for all $n \in \mathbb{N}$. We consider two cases, depending on whether $a=b$ or not.

First case: $a \neq b$. We have $D^{n} \mid a N^{n}-b M^{n}$ and $D^{n}\left|D^{2 n}\right| a N^{2 n}-b M^{2 n}$. Hence, $D^{n} \mid\left(a N^{n}-b M^{n}\right)\left(a N^{n}+b M^{n}\right)=a^{2} N^{2 n}-b^{2} M^{2 n}$ and thus $D^{n} \mid\left(a^{2} N^{2 n}-\right.$ $\left.b^{2} M^{2 n}\right)-a\left(a N^{2 n}-b M^{2 n}\right)=b(a-b) M^{2 n}$. Because $D=E$ and M are coprime, we deduce that $D^{n} \mid b(a-b)$. The number $b(a-b)$ is $\neq 0$ because $b \neq 0$ and $a \neq b$, hence $D=1$.

SECOND CASE: $a=b$. This case is a bit more difficult. As mentioned in the Theorem, we exclude the case $x=y$ or else $c_{n}=0 \in \mathbb{Z}$ for all n, independently of the value of x. Let $R=\operatorname{gcd}(M, N)$ and write $N=R N_{1}$ and $M=R M_{1}$. Because D is coprime to both N and M, D is coprime to R. As $D^{n} \mid a\left(N^{n}-M^{n}\right)$, we deduce that $D^{n} \mid a\left(N_{1}^{n}-M_{1}^{n}\right)$ and we write $a\left(N_{1}^{n}-M_{1}^{n}\right)=a\left(N_{1}-M_{1}\right) C_{n}$ where $C_{n}=\left(N_{1}^{n}-M_{1}^{n}\right) /\left(N_{1}-M_{1}\right)$. Since $D \mid a\left(N_{1}-M_{1}\right)$, we deduce, for each n such that C_{n} is coprime to a and $N_{1}-M_{1}$, that $D^{n} \mid a\left(N_{1}-M_{1}\right)$. If this is true for infinitely many n, we will have $D=1$ as $a\left(N_{1}-M_{1}\right) \neq 0$ since $a \neq 0$ and $x \neq y$.

We are thus reduced to showing that C_{n} is coprime to both a and $N_{1}-M_{1}$ for infinitely many n. We do so for n a prime number which divides neither $N_{1}-M_{1}$ nor a nor $\varphi(a)$. For such an n, Lemma 3 below applies to show that $N_{1}-M_{1}$ and C_{n} are coprime and Lemma 5 applies to show that a and C_{n} are coprime, hence the result.

3 Auxiliary lemmas

We recall the notion of order of an integer n modulo a prime number p, say $o_{p}(n)$: it is the minimal positive integer r such that $n^{r} \equiv 1(\bmod p)$. One knows that $o_{p}(n)$ divides $\varphi(p)=p-1$; for example (check it !) $o_{1093}(2)=364$.

In the previous proof, we have used the following lemmas. The first two are classical results, but we recall their proofs for the convenience of the reader.

Lemma 3 Consider $n \geq 1$. If N_{1} and M_{1} are two coprime integers such that n and $N_{1}-M_{1}$ are coprime, then $N_{1}-M_{1}$ and $C_{n}=\left(N_{1}^{n}-M_{1}^{n}\right) /\left(N_{1}-M_{1}\right)$ are coprime.

In fact, one can show [1, Exercise 71, p. 20] that, if $d=\operatorname{gcd}(a, b)$, then

$$
\operatorname{gcd}\left(\frac{a^{n}-b^{n}}{a-b}, a-b\right)=\operatorname{gcd}\left(n d^{n-1}, a-b\right)
$$

Proof. Let p be a prime number dividing $N_{1}-M_{1}$. As $N_{1} \equiv M_{1} \bmod p$, we have $M_{1}^{i} N_{1}^{j} \equiv N_{1}^{i+j} \bmod p$ and thus $C_{n} \equiv n N_{1}^{n-1} \bmod p$. As n and p are coprime and N_{1} and p are also coprime (because p divides $N_{1}-M_{1}$ with N_{1} coprime to M_{1}), we deduce that C_{n} and p are coprime. This is true for each prime p dividing $N_{1}-M_{1}$, thus C_{n} and $N_{1}-M_{1}$ are coprime.

Lemma 4 If $n \neq p$ are two prime numbers, then the existence of $x \in \mathbb{Z}$ such that $\Phi_{n}(x) \equiv 0 \bmod p$ implies that $n \mid \varphi(p)=p-1$.

Although it simplifies the proof, the fact that n is prime is not necessary as long as n and p are coprime; see [2, Theorem 94, p. 164].

Proof. As $\Phi_{n}(x) \equiv 0 \bmod p$, we have $x^{n} \equiv 1 \bmod p$. Because $\Phi_{n}(1)=n \not \equiv 0$ $\bmod p$, we deduce that $x \not \equiv 1 \bmod p$ and so x is of order n as n is prime. Hence, $n \mid \varphi(p)$.

Lemma 5 Let n be a prime number, N_{1} and M_{1} two coprime integers and $C_{n}=$ $\left(N_{1}^{n}-M_{1}^{n}\right) /\left(N_{1}-M_{1}\right)$. If n is coprime to both a and $\varphi(a)$, then a is coprime to C_{n}.

Proof. As n is a prime number, we can write $C_{n}=M_{1}^{n-1} \Phi_{n}\left(\frac{N_{1}}{M_{1}}\right)=N_{1}^{n-1} \Phi_{n}\left(\frac{M_{1}}{N_{1}}\right)$. Let p be a prime number dividing a; as n and a are coprime, so are n and p; similarly, n and $\varphi(p)$ are coprime since $\varphi(p) \mid \varphi(a)$. Because M_{1} and N_{1} are coprime, one of them, let's say M_{1}, is not divisible by p. Denote by M_{1}^{\prime} the inverse of $M_{1} \bmod p$ so that $C_{n} \equiv M_{1}^{n-1} \Phi_{n}\left(N_{1} M_{1}^{\prime}\right) \bmod p$. Since $M_{1} \not \equiv 0 \bmod p$ and $\Phi_{n}\left(N_{1} M_{1}^{\prime}\right) \not \equiv 0 \bmod p$ by Lemma 4 , we have $C_{n} \not \equiv 0 \bmod p$. As this is true for every prime dividing a, we deduce that a and C_{n} are coprime.

4 Strengthening of the theorem

In the previous theorem, it is not necessary to assume that all the c_{n} are in \mathbb{Z} : we only need $c_{n} \in \mathbb{Z}$ for $1 \leq n \leq N$ with N sufficiently large. How large depends on a and b, as we will now see in the case $a \neq b$. Before that, we introduce the notation $\epsilon(1)=0$ and, if $m \geq 2, \epsilon(m)=\max _{1 \leq i \leq r} \alpha_{i}$ where $m=p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}$ is the prime decomposition of m (all the p_{i} being distinct).

Proposition 1 Consider $a \neq b$ in $\mathbb{Z}^{*}, x, y \in \mathbb{Q}$, and $N \in \mathbb{N}$. Assume that $N>\epsilon(a), N>\epsilon(b)$ and $N>2 \epsilon(b(a-b))$. If $a x^{n}-b y^{n} \in \mathbb{Z}$ for $1 \leq n \leq N$, then x and y are both integers.

Proof. We only need to show that the proofs of Lemma 1 and Lemma 2 stay valid. In the proof of Lemma 1 , we need to be able to take $n>\max (\alpha, \beta)$, which is allowed by the conditions $N>\epsilon(a)$ and $N>\epsilon(b)$. In the case $a \neq b$ of Lemma 2, we need $n>\epsilon(b(a-b))$ for the condition $D^{n} \mid b(a-b)$ to imply that $D=1$; but as this condition is obtained by considering $D^{2 n} \mid a N^{2 n}-b M^{2 n}$, we need to be able to take $n>2 \epsilon(b(a-b))$, which is allowed by the condition $N>2 \epsilon(b(a-b))$.

Example: If $a=2$ and $b=1$, the minimal N satisfying the assumptions of the previous proposition is $N=2$ since $\epsilon(a)=1$ and $\epsilon(b)=\epsilon(b(a-b))=0$. By considering $(x, y)=\left(\frac{1}{2}, 3\right)$, we see that this value of N is optimal.

References

[1] J.-M. De Koninck and A. Mercier, 1001 Problems in Classical Number Theory, American Mathematical Society, Providence, Rhode Island, 2007.
[2] T. Nagell, Introduction to Number Theory, 2nd ed., Chelsea, New York, 1981.
[3] R. Israel, Difference of like powers of rational numbers, posted on the Usenet newsgroup sci.math, May 16, 2007, available at http://sci.tech-archive. net/Archive/sci.math/2007-05/msg02738.html.

Luis H. Gallardo
University Of Brest, Mathematics
6, Av. Le Gorgeu
C.S. 93837

29238 Brest Cedex 3, France.
Luis.Gallardo@univ-brest.fr

Philippe Goutet Institut de
Mathématiques de Jussieu, Université Paris VI, Boîte courier 247

4 place Jussieu
75252 Paris Cedex, France.
goutet@math.jussieu.fr

