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On sums and differences of powers

of rational numbers

Luis H. Gallardo and Philippe Goutet

Abstract

Given two nonzero integers a, b ∈ Z∗, we characterize the rational
numbers x, y such that axn − byn ∈ Z for all non-negative integers n ∈ N.

1 Introduction

If a rational number x ∈ Q has a power which is an integer, then x itself is forced
to be an integer by the fundamental theorem of arithmetic. In other words if
we have x = N

D with a positive integer D and an integer N , and both satisfy
(N/D)r = K (where K is an integer), for some positive integer r, where N/D is
a reduced fraction (N and D have no common factors, we also say that N and D
are coprime); then by comparing exponents of each prime number appearing in
both sides of the equality

Nr = DrK

we get D = 1 so that x = N is indeed an integer.
A natural generalization of this problem consists in looking at cn = axn−byn

where a, b ∈ Z∗ are two nonzero integers and x, y ∈ Q are two rational numbers,
and asking if the existence of some values of n such that cn is an integer, i.e.,
cn ∈ Z implies that x and y are indeed integers, i.e., x, y ∈ Z.

The existence of only one n such that cn ∈ Z is not sufficient, as shown, for
example (check it !), by the relation ( 13

2 )5 + ( 19
2 )5 = 88981 ∈ Z. However, the

result becomes true with the stronger assumption that all the cn are in Z.

Theorem 1 Consider two nonzero integers a, b ∈ Z∗ and two rational numbers
x, y ∈ Q. If, for all n ∈ N, axn − byn ∈ Z, then x and y are both integers unless
a = b and x = y.

Robert Israel (University of British Columbia), gives a direct proof [3] of the
case a = b = 1. At the end of the present note, we look at how to weaken the
assumption that all the cn are in Z when a 6= b.

We recall some classical notation used in the proof: If a and b are two integers
such that there exists an integer m such that ma = b then we say that a divides
b and we write: a | b. As usual, we write d = gcd(a, b) their greatest common
divisor, so that, for example, gcd(17, 51) = 17, while gcd(a, b) = 1 is equivalent to
a, b are coprime. Now, we fix a positive integer n ∈ N. First of all, Euler’s totient
function computed on n, denoted ϕ(n) gives us the number of positive integers
h in between 1 and n that are coprime with n. Second, and this is a little more
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complicated object we consider here: the n-th cyclotomic polynomial Φn(t) is a
one variable polynomial in the indeterminate t with integral coefficients that has
the property that it is the polynomial, with integer coefficients, of minimal degree
that vanishes when t = w where the complex, but non-real, number w ∈ C is
a n-th root of unity; this means that wn = 1. For example, Φ3(t) = t2 + t + 1,

since Φ3(t) = t3−1
t−1 shows that Φ3(w) = 0 for w = −1+i

√
3

2 = e
2πi
3 and also for

w2 = −1−i
√
3

2 = e
−2πi

3 , where w,w2 are the, non-real, 3-roots of unity in the field
of complex numbers C; while any polynomial of degree 1 with integer coefficients
cannot vanish simultaneously in w and in w2. A nice result of Gauss is that the
degree of Φn(t) is precisely ϕ(n).

2 The proof

We write x and y as irreducible fractions x = N
D and y = M

E with D,E > 0. In
order to show that both x and y are integers, we proceed in two steps, first showing
that D = E and then showing that D = 1.

Lemma 1 D = E.

Proof. As cn = axn − byn ∈ Z, we have aNnEn − bMnDn = cnE
nDn. Since D

and N are coprime, we deduce that Dn | aEn. Similarly, En | bDn.
Consider a prime number p and write a = pαa′, b = pβb′, D = pdD′,

and E = peE′ with a′, b′, D′, and E′ coprime to p. Because En | bDn, we have
ne ≤ nd+β and, similarly, Dn | aEn gives nd ≤ ne+α. By taking n > max(α, β),
we deduce that e ≤ d and d ≤ e and so d = e. As this is valid for any prime p, we
conclude that D = E.

Lemma 2 D = 1.

Proof. As D = E, we can rewrite axn − byn = cn as aNn − bMn = cnD
n and

so Dn | aNn − bMn for all n ∈ N. We consider two cases, depending on whether
a = b or not.

First case: a 6= b. We have Dn | aNn−bMn and Dn | D2n | aN2n−bM2n.
Hence, Dn | (aNn−bMn)(aNn+bMn) = a2N2n−b2M2n and thus Dn | (a2N2n−
b2M2n) − a(aN2n − bM2n) = b(a − b)M2n. Because D = E and M are coprime,
we deduce that Dn | b(a− b). The number b(a− b) is 6= 0 because b 6= 0 and a 6= b,
hence D = 1.

Second case: a = b. This case is a bit more difficult. As mentioned in the
Theorem, we exclude the case x = y or else cn = 0 ∈ Z for all n, independently of
the value of x. Let R = gcd(M,N) and write N = RN1 and M = RM1. Because
D is coprime to both N and M , D is coprime to R. As Dn | a(Nn −Mn), we
deduce that Dn | a(Nn

1 −Mn
1 ) and we write a(Nn

1 −Mn
1 ) = a(N1−M1)Cn where

Cn = (Nn
1 −Mn

1 )/(N1 −M1). Since D | a(N1 −M1), we deduce, for each n such
that Cn is coprime to a and N1 −M1, that Dn | a(N1 −M1). If this is true for
infinitely many n, we will have D = 1 as a(N1 −M1) 6= 0 since a 6= 0 and x 6= y.
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We are thus reduced to showing that Cn is coprime to both a and N1−M1 for
infinitely many n. We do so for n a prime number which divides neither N1 −M1

nor a nor ϕ(a). For such an n, Lemma 3 below applies to show that N1 −M1 and
Cn are coprime and Lemma 5 applies to show that a and Cn are coprime, hence
the result.

3 Auxiliary lemmas

We recall the notion of order of an integer n modulo a prime number p, say op(n):
it is the minimal positive integer r such that nr ≡ 1 (mod p). One knows that
op(n) divides ϕ(p) = p− 1; for example (check it !) o1093(2) = 364.

In the previous proof, we have used the following lemmas. The first two are
classical results, but we recall their proofs for the convenience of the reader.

Lemma 3 Consider n ≥ 1. If N1 and M1 are two coprime integers such that n
and N1 −M1 are coprime, then N1 −M1 and Cn = (Nn

1 −Mn
1 )/(N1 −M1) are

coprime.

In fact, one can show [1, Exercise 71, p. 20] that, if d = gcd(a, b), then

gcd(
an − bn

a− b
, a− b) = gcd(ndn−1, a− b).

Proof. Let p be a prime number dividing N1 −M1. As N1 ≡M1 mod p, we have
M i

1N
j
1 ≡ N i+j

1 mod p and thus Cn ≡ nNn−1
1 mod p. As n and p are coprime

and N1 and p are also coprime (because p divides N1 −M1 with N1 coprime to
M1), we deduce that Cn and p are coprime. This is true for each prime p dividing
N1 −M1, thus Cn and N1 −M1 are coprime.

Lemma 4 If n 6= p are two prime numbers, then the existence of x ∈ Z such that
Φn(x) ≡ 0 mod p implies that n | ϕ(p) = p− 1.

Although it simplifies the proof, the fact that n is prime is not necessary as
long as n and p are coprime; see [2, Theorem 94, p. 164].

Proof. As Φn(x) ≡ 0 mod p, we have xn ≡ 1 mod p. Because Φn(1) = n 6≡ 0
mod p, we deduce that x 6≡ 1 mod p and so x is of order n as n is prime. Hence,
n | ϕ(p).

Lemma 5 Let n be a prime number, N1 and M1 two coprime integers and Cn =
(Nn

1 −Mn
1 )/(N1 −M1). If n is coprime to both a and ϕ(a), then a is coprime to

Cn.

Proof. As n is a prime number, we can write Cn = Mn−1
1 Φn(N1

M1
) = Nn−1

1 Φn(M1

N1
).

Let p be a prime number dividing a; as n and a are coprime, so are n and p;
similarly, n and ϕ(p) are coprime since ϕ(p) | ϕ(a). Because M1 and N1 are
coprime, one of them, let’s say M1, is not divisible by p. Denote by M ′1 the inverse
of M1 mod p so that Cn ≡ Mn−1

1 Φn(N1M
′
1) mod p. Since M1 6≡ 0 mod p and

Φn(N1M
′
1) 6≡ 0 mod p by Lemma 4, we have Cn 6≡ 0 mod p. As this is true for

every prime dividing a, we deduce that a and Cn are coprime.
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4 Strengthening of the theorem

In the previous theorem, it is not necessary to assume that all the cn are in Z:
we only need cn ∈ Z for 1 ≤ n ≤ N with N sufficiently large. How large depends
on a and b, as we will now see in the case a 6= b. Before that, we introduce the
notation ε(1) = 0 and, if m ≥ 2, ε(m) = max1≤i≤r αi where m = pα1

1 . . . pαrr is the
prime decomposition of m (all the pi being distinct).

Proposition 1 Consider a 6= b in Z∗, x, y ∈ Q, and N ∈ N. Assume that
N > ε(a), N > ε(b) and N > 2ε(b(a− b)). If axn − byn ∈ Z for 1 ≤ n ≤ N , then
x and y are both integers.

Proof. We only need to show that the proofs of Lemma 1 and Lemma 2 stay
valid. In the proof of Lemma 1, we need to be able to take n > max(α, β), which
is allowed by the conditions N > ε(a) and N > ε(b). In the case a 6= b of Lemma 2,
we need n > ε(b(a− b)) for the condition Dn | b(a− b) to imply that D = 1; but
as this condition is obtained by considering D2n | aN2n − bM2n, we need to be
able to take n > 2ε(b(a− b)), which is allowed by the condition N > 2ε(b(a− b)).

Example: If a = 2 and b = 1, the minimal N satisfying the assumptions of the
previous proposition is N = 2 since ε(a) = 1 and ε(b) = ε(b(a − b)) = 0. By
considering (x, y) = (1

2 , 3), we see that this value of N is optimal.
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